
Instrument Control Toolbox™

User's Guide

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Instrument Control Toolbox™ User's Guide
© COPYRIGHT 2005–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
November 2000 First printing New for Version 1.0 (Release 12)
June 2001 Second printing Revised for Version 1.1 (Release 12.1)
July 2002 Online only Revised for Version 1.2 (Release 13)
August 2002 Third printing Revised for Version 1.2
June 2004 Online only Revised for Version 2.0 (Release 14)
October 2004 Fourth printing Revised for Version 2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2 (Release 14SP2)
June 2005 Fifth printing Minor revision for Version 2.2
September 2005 Online only Revised for Version 2.3 (Release 14SP3)
March 2006 Online only Revised for Version 2.4 (Release 2006a)
September 2006 Online only Revised for Version 2.4.1 (Release 2006b)
March 2007 Online only Revised for Version 2.4.2 (Release 2007a)
September 2007 Sixth printing Revised for Version 2.5 (Release 2007b)
March 2008 Online only Revised for Version 2.6 (Release 2008a)
October 2008 Online only Revised for Version 2.7 (Release 2008b)
March 2009 Online only Revised for Version 2.8 (Release 2009a)
September 2009 Online only Revised for Version 2.9 (Release 2009b)
March 2010 Online only Revised for Version 2.10 (Release 2010a)
September 2010 Online only Revised for Version 2.11 (Release 2010b)
April 2011 Online only Revised for Version 2.12 (Release 2011a)
September 2011 Online only Revised for Version 3.0 (Release 2011b)
March 2012 Online only Revised for Version 3.1 (Release 2012a)
September 2012 Online only Revised for Version 3.2 (Release 2012b)
March 2013 Online only Revised for Version 3.3 (Release 2013a)
September 2013 Online only Revised for Version 3.4 (Release 2013b)
March 2014 Online only Revised for Version 3.5 (Release 2014a)
October 2014 Online only Revised for Version 3.6 (Release 2014b)
March 2015 Online only Revised for Version 3.7 (Release 2015a)
September 2015 Online only Revised for Version 3.8 (Release 2015b)
March 2016 Online only Revised for Version 3.9 (Release 2016a)
September 2016 Online only Revised for Version 3.10 (Release 2016b)
March 2017 Online only Revised for Version 3.11 (Release 2017a)
September 2017 Online only Revised for Version 3.12 (Release 2017b)

Getting Started
1

Instrument Control Toolbox Product Description 1-2
Key Features . 1-2

Instrument Control Toolbox Overview 1-3
Getting to Know the Instrument Control Toolbox Software . . . 1-3
Exploring the Instrument Control Toolbox Software 1-4
Learning About the Instrument Control Toolbox Software . . . 1-4
Using the Documentation Examples . 1-5

About Instrument Control . 1-6
Passing Information Between the MATLAB Workspace and

Your Instrument . 1-6
MATLAB Functions . 1-8
Interface Driver Adaptor . 1-9

Installation Information . 1-10
Installation Requirements . 1-10
Toolbox Installation . 1-10
Hardware and Driver Installation . 1-11

Supported Hardware . 1-12

Examining Your Hardware Resources 1-14
instrhwinfo Function . 1-14
Test & Measurement Tool . 1-18
Viewing the IVI Configuration Store 1-19

Communicating with Your Instrument 1-22
Instrument Control Session Examples 1-22
Communicating with a GPIB Instrument 1-22
Communicating with a GPIB-VXI Instrument 1-23
Communicating with a Serial Port Instrument 1-24

v

Contents

Communicating with a GPIB Instrument Using a Device
Object . 1-25

General Preferences for Instrument Control 1-27
Accessing General Preferences . 1-27
MATLAB Instrument Driver Editor 1-28
MATLAB Instrument Driver Testing Tool 1-29
Device Objects . 1-30
IVI Configuration Store . 1-31
IVI Instruments . 1-31

Interface and Property Help . 1-32
instrhelp Function . 1-32
propinfo Function . 1-33
instrsupport Function . 1-34
Overview Help . 1-34
Documentation Examples . 1-34
Online Support . 1-35

Instrument Control Session
2

Creating Instrument Objects . 2-2
Overview . 2-2
Interface Objects . 2-2
Device Objects . 2-2

Connecting to the Instrument . 2-4

Configuring and Returning Properties 2-5
Configuring Property Names and Property Values 2-5
Returning Property Names and Property Values 2-6
Property Inspector . 2-6

Communicating with Your Instrument 2-8
Interface Objects and Instrument Commands 2-8
Device Objects and Instrument Drivers 2-8

Disconnecting and Cleaning Up . 2-9
Disconnecting an Instrument Object . 2-9

vi Contents

Cleaning Up the MATLAB Workspace 2-9

Summary . 2-10
Advantages of Using Device Objects 2-10
When to Use Interface Objects . 2-10

Instrument Control Toolbox Properties 2-12

Using Interface Objects
3

Creating an Interface Object . 3-2
Object Creation Functions . 3-2
Configuring Properties During Object Creation 3-3
Creating an Array of Instrument Objects 3-3

Connecting to the Instrument . 3-5

Configuring and Returning Properties 3-6
Base and Interface-Specific Properties 3-6
Returning Property Names and Property Values 3-6
Configuring Property Values . 3-9
Specifying Property Names . 3-9
Default Property Values . 3-10
Using Tab Completion for Functions 3-10
Property Inspector . 3-12

Writing and Reading Data . 3-14
Before Performing Read/Write Operations 3-14
Writing Data . 3-15
Reading Data . 3-19

Using SCPI Commands . 3-25

Disconnecting and Cleaning Up . 3-26
Disconnecting an Instrument Object 3-26
Cleaning Up the MATLAB Workspace 3-26

vii

Controlling Instruments Using GPIB
4

GPIB Overview . 4-2
What Is GPIB? . 4-2
Important GPIB Features . 4-3
GPIB Lines . 4-4
Status and Event Reporting . 4-8

Creating a GPIB Object . 4-13
Using the gpib Function . 4-13
GPIB Object Display . 4-14

Configuring the GPIB Address . 4-16

Writing and Reading Data . 4-18
Rules for Completing Write and Read Operations 4-18
Writing and Reading Text Data . 4-19
Reading and Writing Binary Data . 4-22
Parsing Input Data Using scanstr . 4-25
Understanding EOI and EOS . 4-26

Events and Callbacks . 4-29
Introduction to Events and Callbacks 4-29
Event Types and Callback Properties 4-30
Responding To Event Information . 4-31
Creating and Executing Callback Functions 4-32
Enabling Callback Functions After They Error 4-33
Using Events and Callbacks to Read Binary Data 4-34

Triggers . 4-36
Using the trigger Function . 4-36
Executing a Trigger . 4-36

Serial Polls . 4-39
Using the spoll Function . 4-39
Executing a Serial Poll . 4-39

viii Contents

Controlling Instruments Using VISA
5

VISA Overview . 5-2
What Is VISA? . 5-2
Interfaces Used with VISA . 5-2
Supported Vendor and Resource Names 5-3

Working with the GPIB Interface . 5-5
Understanding VISA-GPIB . 5-5
Creating a VISA-GPIB Object . 5-5
VISA-GPIB Address . 5-8

Working with VXI and PXI Interfaces 5-10
Understanding VISA-VXI . 5-10
Understanding VISA-PXI . 5-11
Creating a VISA-VXI Object . 5-11
VISA-VXI Address . 5-13
Register-Based Communication . 5-14

Working with the GPIB-VXI Interface 5-22
Understanding VISA-GPIB-VXI . 5-22
Creating a VISA-GPIB-VXI Object . 5-23
VISA-GPIB-VXI Address . 5-25

Working with the Serial Port Interface 5-27
Understanding the Serial Port . 5-27
Creating a VISA-Serial Object . 5-27
Configuring Communication Settings 5-29

Working with the USB Interface . 5-31
Creating a VISA-USB Object . 5-31
VISA-USB Address . 5-33

Working with the TCP/IP Interface for VXI-11 and
HiSLIP . 5-35

Understanding VISA-TCP/IP . 5-35
Creating a VISA-TCPIP Object . 5-35
VISA-TCPIP Address . 5-37

Working with the RSIB Interface . 5-39
Understanding VISA-RSIB . 5-39

ix

Creating a VISA-RSIB Object . 5-39
VISA-RSIB Address . 5-41

Working with the Generic Interface . 5-43
Generic VISA . 5-43
VISA Node and Generic VISA Support in Test & Measurement

Tool . 5-43
Generic VISA Support in the Command-line Interface 5-43

Reading and Writing ASCII Data Using VISA 5-46
Configuring and Connecting to the Instrument 5-47
Writing ASCII Data . 5-47
ASCII Write Properties . 5-48
Reading ASCII Data . 5-49
ASCII Read Properties . 5-50
Cleanup . 5-51

Reading and Writing Binary Data Using VISA 5-52
Configuring and Connecting to the Instrument 5-53
Writing Binary Data . 5-53
Binary Write Properties . 5-54
Reading Binary Data . 5-55
Binary Read Properties . 5-55
Cleanup . 5-57

Asynchronous Read and Write Operations Using VISA 5-59
Functions and Properties . 5-59
Synchronous Versus Asynchronous Operations 5-60
Configuring and Connecting to the Instrument 5-60
Reading Data Asynchronously . 5-61
Asynchronous Read Properties . 5-61
Using Callbacks During an Asynchronous Read 5-62
Writing Data Asynchronously . 5-63
Cleanup . 5-63

Controlling Instruments Using the Serial Port
6

Serial Port Overview . 6-2
What Is Serial Communication? . 6-2

x Contents

Serial Port Interface Standard . 6-2
Supported Platforms . 6-3
Connecting Two Devices with a Serial Cable 6-3
Serial Port Signals and Pin Assignments 6-4
Serial Data Format . 6-8
Finding Serial Port Information for Your Platform 6-11

Serial Port Object . 6-15
Creating a Serial Port Object . 6-15
Serial Port Object Display . 6-17

Configuring Communication Settings 6-19

Writing and Reading Data . 6-20
Asynchronous Write and Read Operations 6-20
Rules for Completing Write and Read Operations 6-26
Writing and Reading Text Data . 6-27
Writing and Reading Binary Data . 6-31

Events and Callbacks . 6-36
Event Types and Callback Properties 6-36
Responding To Event Information . 6-37
Using Events and Callbacks . 6-39

Using Control Pins . 6-41
Control Pins . 6-41
Signaling the Presence of Connected Devices 6-41
Controlling the Flow of Data: Handshaking 6-44

Controlling Instruments Using TCP/IP and UDP
7

TCP/IP and UDP Comparison . 7-2

Create a TCP/IP Object . 7-4
TCP/IP Object . 7-4
TCP/IP Object Display . 7-5

TCP/IP Communication with a Remote Host 7-7
Server Drops the Connection . 7-8

xi

Create a UDP Object . 7-10
UDP Object . 7-10
The UDP Object Display . 7-12
Enable Port Sharing over UDP . 7-12

UDP Communication Between Two Hosts 7-14

Rules for Completing Read and Write Operations over
TCP/IP and UDP . 7-16

Completing Write Operations . 7-16
Completing Read Operations . 7-16

Basic Workflow to Read and Write Data over TCP/IP 7-18

Read and Write ASCII Data over TCP/IP 7-21
Functions and Properties . 7-21
Configuring and Connecting to the Server 7-22
Writing ASCII Data . 7-23
ASCII Write Properties . 7-23
Reading ASCII Data . 7-24
ASCII Read Properties . 7-25
Cleanup . 7-25

Read and Write Binary Data over TCP/IP 7-26
Functions and Properties . 7-26
Configuring and Connecting to the Server 7-27
Writing Binary Data . 7-28
Binary Write Properties . 7-29
Configuring InputBufferSize . 7-29
Reading Binary Data . 7-30
Cleanup . 7-31

Asynchronous Read and Write Operations over TCP/IP . . . 7-32
Functions and Properties . 7-32
Synchronous Versus Asynchronous Operations 7-33
Configuring and Connecting to the Server 7-33
Reading Data Asynchronously . 7-34
Reading Data Asynchronously – Continuous

ReadAsyncMode . 7-34
Reading Data Asynchronously – Manual ReadAsyncMode . . 7-35
Defining an Asynchronous Read Callback 7-36
Using Callbacks During an Asynchronous Read 7-37
Writing Data Asynchronously . 7-37

xii Contents

Cleanup . 7-37

Basic Workflow to Read and Write Data over UDP 7-39

Read and Write ASCII Data over UDP 7-41
Functions and Properties . 7-41
Configuring and Connecting to the Server 7-42
Writing ASCII Data . 7-42
ASCII Write Properties . 7-43
Reading ASCII Data . 7-44
ASCII Read Properties . 7-45
Cleanup . 7-46

Read and Write Binary Data over UDP 7-47
Functions and Properties . 7-47
Configuring and Connecting to the Server 7-48
Writing Binary Data . 7-49
Configuring InputBufferSize . 7-50
Reading Binary Data . 7-50
Cleanup . 7-52

Asynchronous Read and Write Operations over UDP 7-53
Functions and Properties . 7-53
Synchronous Versus Asynchronous Operations 7-54
Configuring and Connecting to the Server 7-54
Reading Data Asynchronously . 7-55
Reading Data Asynchronously Using Continuous

ReadAsyncMode . 7-55
Reading Data Asynchronously Using Manual

ReadAsyncMode . 7-56
Defining an Asynchronous Read Callback 7-57
Using Callbacks During an Asynchronous Read 7-58
Writing Data Asynchronously . 7-58
Cleanup . 7-59

Events and Callbacks . 7-60
Event Types and Callback Properties 7-60
Responding To Event Information . 7-61
Using Events and Callbacks . 7-63

Communicate Using TCP/IP Server Sockets 7-64
About Server Sockets . 7-64
Example . 7-64

xiii

Controlling Instruments Using Bluetooth
8

Bluetooth Interface Overview . 8-2
Bluetooth Communication . 8-2
Supported Platforms for Bluetooth . 8-2

Configuring Bluetooth Communication 8-3
Discovering Your Device . 8-3
Viewing Bluetooth Device Properties 8-5

Transmitting Data Over the Bluetooth Interface 8-10

Using Bluetooth Interface in Test & Measurement Tool . . . 8-14
Troubleshooting . 8-14

Using Events and Callbacks with Bluetooth 8-15

Bluetooth Interface Usage Guidelines 8-16

Controlling Instruments Using I2C
9

I2C Interface Overview . 9-2
I2C Communication . 9-2
Supported Platforms for I2C . 9-2

Configuring I2C Communication . 9-4

Transmitting Data Over the I2C Interface 9-8

Using Properties on an I2C Object . 9-14

I2C Interface Usage Requirements and Guidelines 9-17

xiv Contents

Controlling Instruments Using SPI
10

SPI Interface Overview . 10-2
SPI Communication . 10-2
Supported Platforms for SPI . 10-2

Configuring SPI Communication . 10-4

Transmitting Data Over the SPI Interface 10-9

Using Properties on the SPI Object 10-17

SPI Interface Usage Requirements and Guidelines 10-21

Controlling Devices Using MODBUS
11

MODBUS Interface Supported Features 11-2
MODBUS Capabilities . 11-2
Supported Platforms for MODBUS . 11-2

Create a MODBUS Connection . 11-4

Configure Properties for MODBUS Communication 11-7

Read Data from a MODBUS Server . 11-11
Types of Data You Can Read Over MODBUS 11-11
Reading Coils Over MODBUS . 11-11
Reading Inputs Over MODBUS . 11-12
Reading Input Registers Over MODBUS 11-13
Reading Holding Registers Over MODBUS 11-14
Specifying Server ID and Precision 11-14

Read Temperature from a Remote Temperature Sensor . . 11-16

Write Data to a MODBUS Server . 11-18
Types of Data You Can Write to Over MODBUS 11-18
Writing Coils Over MODBUS . 11-18

xv

Writing Holding Registers Over MODBUS 11-19

Write and Read Multiple Holding Registers 11-21

Modify the Contents of a Holding Register Using a Mask
Write . 11-24

Using Device Objects
12

Device Objects . 12-2
Overview . 12-2
What Are Device Objects? . 12-2
Device Objects for MATLAB Instrument Drivers 12-3

Creating and Connecting Device Objects 12-5
Device Objects for MATLAB Interface Drivers 12-5
Device Objects for VXIplug&play and IVI Drivers 12-6
Connecting the Device Object . 12-7

Communicating with Instruments . 12-8
Configuring Instrument Settings . 12-8
Calling Device Object Methods . 12-9
Control Commands . 12-11

Device Groups . 12-13
Working with Group Objects . 12-13
Using Device Groups to Access Instrument Data 12-14

Using VXIplug&play Drivers
13

VXI plug and play Setup . 13-2
Instrument Control Toolbox Software and VXIplug&play

Drivers . 13-2
VISA Setup . 13-2
Other Software Requirements . 13-3

xvi Contents

VXI plug and play Drivers . 13-4
Installing VXI plug&play Drivers . 13-4
Creating a MATLAB VXIplug&play Instrument Driver 13-5
Constructing Device Objects Using a MATLAB VXIplug&play

Instrument Driver . 13-8
Creating Shared Libraries or Standalone Applications When

Using IVI-C or VXI . 13-8

Using IVI Drivers
14

IVI Drivers Overview . 14-2
Instrument Control Toolbox Software and IVI Drivers 14-2
IVI-C . 14-2

Instrument Interchangeability . 14-3
Minimal Code Changes . 14-3
Effective Use of Interchangeability . 14-3
Examples of Interchangeability . 14-3

Getting Started with IVI Drivers . 14-5
Introduction . 14-5
Requirements to Work with MATLAB 14-6
Creating Shared Libraries or Standalone Applications When

Using IVI-C or VXI . 14-9
MATLAB IVI Instrument Driver . 14-9
Using MATLAB IVI Wrappers . 14-12

IVI Configuration Store . 14-15
Benefits of an IVI Configuration Store 14-15
Components of an IVI Configuration Store 14-15
Configuring an IVI Configuration Store 14-16

Using IVI-C Class-Compliant Wrappers 14-21
IVI-C Wrappers . 14-21
Prerequisites . 14-21
Creating Shared Libraries or Standalone Applications When

Using IVI-C or VXI . 14-22
Reading Waveforms Using the IVI-C Class Compliant

Interface . 14-22

xvii

IVI-C Class Compliant Wrappers in Test & Measurement
Tool . 14-23

The Quick-Control Interfaces . 14-25

Quick-Control Oscilloscope Requirements 14-26

Read Waveforms Using the Quick-Control Oscilloscope . . 14-28

Read a Waveform Using a Tektronix Scope 14-31

Quick-Control Oscilloscope Functions 14-34

Quick-Control Oscilloscope Properties 14-36

Quick-Control Function Generator Requirements 14-38

Generate Standard Waveforms Using the Quick-Control
Function Generator . 14-40

Generate Arbitrary Waveforms Using Quick-Control
Function Generator . 14-43

Quick-Control Function Generator Functions 14-45

Quick-Control Function Generator Properties 14-48

Quick-Control RF Signal Generator Requirements 14-52

Quick-Control RF Signal Generator Functions 14-54

Quick-Control RF Signal Generator Properties 14-56

Download and Generate Signals with RF Signal
Generator . 14-59

Create an RF Signal Generator Object 14-59
Download a Waveform . 14-61
Generate Signal and Modulation Output 14-61

Creating Shared Libraries or Standalone Applications When
Using IVI-C or VXI . 14-63

xviii Contents

Instrument Support Packages
15

Instrument Control Toolbox Supported Hardware 15-2

Install the Ocean Optics Spectrometers Support
Package . 15-4

Install the NI-SCOPE Oscilloscopes Support Package 15-6

Install the NI-FGEN Function Generators Support
Package . 15-7

Install the NI-DCPower Power Supplies Support
Package . 15-8

Install the NI-DMM Digital Multimeters Support
Package . 15-10

Install the NI-845x I2C/SPI Interface Support Package . . . 15-12

Install the Total Phase Aardvark I2C/SPI Interface Support
Package . 15-14

Install the NI-Switch Hardware Support Package 15-15

Install the National Instruments VISA and ICP Interfaces
Support Package . 15-16

Install the Keysight IO Libraries and VISA Interface Support
Package . 15-18

Using Generic Instrument Drivers
16

Generic Drivers: Overview . 16-2

xix

Writing a Generic Driver . 16-3
Creating the Driver and Defining Its Initialization

Behavior . 16-3
Defining Properties . 16-4
Defining Functions . 16-7

Using Generic Driver with Test & Measurement Tool 16-8
Creating and Connecting the Device Object 16-8
Accessing Properties . 16-9
Using Functions . 16-10

Using a Generic Driver at Command Line 16-11
Creating and Connecting the Device Object 16-11
Accessing Properties . 16-12
Using Functions . 16-13

Saving and Loading the Session
17

Saving and Loading Instrument Objects 17-2
Saving Instrument Objects to a File 17-2
Saving Objects to a MAT-File . 17-3

Debugging: Recording Information to Disk 17-5
Using the record Function . 17-5
Introduction to Recording Information 17-6
Creating Multiple Record Files . 17-6
Specifying a File Name . 17-6
Record File Format . 17-7
Recording Information to Disk . 17-9

Test & Measurement Tool
18

Test & Measurement Tool Overview . 18-2
Instrument Control Toolbox Software Support 18-2
Navigating the Tree . 18-2

xx Contents

Using the Test & Measurement Tool . 18-4
Overview of the Examples . 18-4
Hardware . 18-4
Instrument Objects . 18-11
Instrument Drivers . 18-16

Using the Instrument Driver Editor
19

MATLAB Instrument Driver Editor Overview 19-2
What Is a MATLAB Instrument Driver? 19-2
How Does a MATLAB Instrument Driver Work? 19-3
Why Use a MATLAB Instrument Driver? 19-3

Creating MATLAB Instrument Drivers 19-5
Driver Components . 19-5
MATLAB Instrument Driver Editor Features 19-6
Saving MATLAB Instrument Drivers 19-6
Driver Summary and Common Commands 19-6
Initialization and Cleanup . 19-10

Properties . 19-16
Properties: Overview . 19-16
Property Components . 19-16
Examples of Properties . 19-18

Functions . 19-31
Understanding Functions . 19-31
Function Components . 19-31
Examples of Functions . 19-32

Groups . 19-42
Group Components . 19-42
Examples of Groups . 19-43

Using Existing Drivers . 19-58
Modifying MATLAB Instrument Drivers 19-58
Importing VXIplug&play and IVI Drivers 19-59

xxi

Using the Instrument Driver Testing Tool
20

Instrument Driver Testing Tool Overview 20-2
Functionality . 20-2
Drivers . 20-2
Test Structure . 20-3
Starting . 20-3
Example . 20-4

Setting Up Your Test . 20-5
Test File . 20-5
Providing a Name and Description . 20-5
Specifying the Driver . 20-5
Specifying an Interface . 20-6
Setting Test Preferences . 20-6
Setting Up a Driver Test . 20-7

Defining Test Steps . 20-11
Test Step: Set Property . 20-11
Test Step: Get Property . 20-14
Test Step: Properties Sweep . 20-17
Test Step: Function . 20-20

Saving Your Test . 20-24
Saving the Test as MATLAB Code 20-24
Saving the Test as a Driver Function 20-24

Testing and Results . 20-26
Running All Steps . 20-26
Partial Testing . 20-28
Exporting Results . 20-28
Saving Results . 20-29

Instrument Control Toolbox Troubleshooting
21

How to Use This Troubleshooting Guide 21-2

xxii Contents

Is My Hardware Supported? . 21-3
Supported Interfaces . 21-3
Supported Hardware . 21-4

Troubleshooting SPI Interface . 21-5
Supported Platforms . 21-5
Adaptor Requirements . 21-6
Configuration and Connection . 21-7

Troubleshooting I2C Interface . 21-10
Supported Platforms . 21-10
Adaptor Requirements . 21-11
Configuration and Connection . 21-12

Troubleshooting MODBUS Interface 21-15
Supported Platforms . 21-15
Configuration and Connection . 21-16
Other Troubleshooting Tips for MODBUS 21-16

Troubleshooting Bluetooth Interface 21-18
Supported Platforms . 21-18
Adaptor Requirements . 21-18
Configuration and Connection . 21-20
Other Troubleshooting Tips for Bluetooth 21-23
Troubleshoot Bluetooth Interface in Test & Measurement

Tool . 21-24

Troubleshooting Serial Port Interface 21-26
Supported Platforms . 21-26
Adaptor Requirements . 21-27
Configuration and Connection . 21-27
Other Troubleshooting Tips for Serial Port 21-29

Troubleshooting GPIB Interface . 21-31
Supported Platforms . 21-31
Adaptor Requirements . 21-31
Configuration and Connection . 21-33
Other Troubleshooting Tips for GPIB 21-35

Troubleshooting TCP/IP Interface . 21-37
Supported Platforms . 21-37
Configuration and Connection . 21-37
Other Troubleshooting Tips for TCP/IP 21-38

xxiii

Troubleshooting UDP Interface . 21-40
Supported Platforms . 21-40
Configuration and Connection . 21-40

Troubleshooting IVI, VISA, and the Quick-Control
Interfaces . 21-43

Supported Platforms . 21-43
Adaptor Requirements . 21-43
Configuration and Connection . 21-47
VISA Supported Vendor and Resource Names 21-49

Hardware Support Packages . 21-51

Deploying Standalone Applications with Instrument Control
Toolbox . 21-53

Tips for both interface based communication and driver-based
communication . 21-53

Tips for interface based communication 21-53
Tips for driver based communication 21-53
Hardware Support packages . 21-55

Contact MathWorks and Use the instrsupport Function . . 21-56

Using the Instrument Control Toolbox Block Library
22

Overview . 22-2

Opening the Instrument Control Block Library 22-3
Using the instrumentlib Command from MATLAB 22-3
Using the Simulink Library Browser 22-5

Building Simulink Models to Transmit Data 22-7
Sending and Receiving Data Through a Serial Port

Loopback . 22-7
Sending and Receiving Data Over a TCP/IP Network 22-17

xxiv Contents

Functions — Alphabetical List
23

Properties — Alphabetical List
24

Block Reference
25

Vendor Driver Requirements and Limitations
A

Driver Requirements . A-2

GPIB Driver Limitations by Vendor . A-3
ICS Electronics . A-3
Keysight (formerly Agilent Technologies) A-3
Measurement Computing Corporation (MCC) A-4
ADLINK Technology . A-4

VISA Driver Limitations . A-5
Keysight (formerly Agilent Technologies) A-5
National Instruments . A-5

Bibliography
B

xxv

Getting Started

• “Instrument Control Toolbox Product Description” on page 1-2
• “Instrument Control Toolbox Overview” on page 1-3
• “About Instrument Control” on page 1-6
• “Installation Information” on page 1-10
• “Supported Hardware” on page 1-12
• “Examining Your Hardware Resources” on page 1-14
• “Communicating with Your Instrument” on page 1-22
• “General Preferences for Instrument Control” on page 1-27
• “Interface and Property Help” on page 1-32

1

Instrument Control Toolbox Product Description
Control and communicate with test and measurement instruments

Instrument Control Toolbox lets you connect MATLAB® directly to instruments such as
oscilloscopes, function generators, signal analyzers, power supplies, and analytical
instruments. The toolbox connects to your instruments via instrument drivers such as
IVI and VXIplug&play, or via text-based SCPI commands over commonly used
communication protocols such as GPIB, VISA, TCP/IP, and UDP. You can also control
and acquire data from your test equipment without writing code.

With Instrument Control Toolbox, you can generate data in MATLAB to send out to an
instrument, or read data into MATLAB for analysis and visualization. You can automate
tests, verify hardware designs, and build test systems based on LXI, PXI, and AXIe
standards. For remote communication with other computers and devices from MATLAB,
the toolbox provides built-in support for TCP/IP, UDP, I2C, SPI, MODBUS®, and
Bluetooth® serial protocols.

Key Features
• IVI, VXIplug&play, and native MATLAB instrument driver support
• GPIB and VISA (GPIB, GPIB-VXI, VXI, USB, TCP/IP, and serial) support
• TCP/IP, UDP, I2C, MODBUS Serial RTU and TCP/IP, and Bluetooth serial protocol

support
• Instrument Control app for identifying, configuring, and communicating with

instruments
• Simulink® blocks for sending and receiving live data between instruments and

Simulink models
• Functions for reading and writing binary and ASCII data to and from instruments
• Synchronous and asynchronous (blocking and nonblocking) read-and-write operations

1 Getting Started

1-2

Instrument Control Toolbox Overview

In this section...
“Getting to Know the Instrument Control Toolbox Software” on page 1-3
“Exploring the Instrument Control Toolbox Software” on page 1-4
“Learning About the Instrument Control Toolbox Software” on page 1-4
“Using the Documentation Examples” on page 1-5

Getting to Know the Instrument Control Toolbox Software

Instrument Control Toolbox software is a collection of MATLAB functions built on the
MATLAB technical computing environment. The toolbox provides you with these
features:

• A framework for communicating with instruments that support the GPIB interface
(IEEE®-488), the VISA standard, and the TCP/IP and UDP protocols. Note that the
toolbox extends the basic serial port features included with the MATLAB software.

• Support for IVI®, VXIplug&play, and MATLAB instrument drivers.
• Functions for transferring data between the MATLAB workspace and your

instrument:

• The data can be binary (numerical) or text.
• The transfer can be synchronous and block access to the MATLAB Command

Window, or asynchronous and allow access to the MATLAB Command Window.
• Event-based communication.
• Functions for recording data and event information to a text file.
• Tools that facilitate instrument control in an easy-to-use graphical environment.

Instrument Control Toolbox provides access to Agilent® Command Expert from
MATLAB to control and script instrument actions. In addition, Agilent Command Expert
generates MATLAB code that can be used from Instrument Control Toolbox. To learn
more, see the documentation for Agilent Command Expert version 1.1 or later, or

http://www.mathworks.com/agilentcmdexpert

 Instrument Control Toolbox Overview

1-3

http://www.mathworks.com/agilentcmdexpert

MathWorks provides several related products that are especially relevant to the kinds of
tasks you can perform with the Instrument Control Toolbox software. For more
information about any of these products, see

http://www.mathworks.com/products/instrument/related.html.

Exploring the Instrument Control Toolbox Software

For a list of the toolbox functions, type

help instrument

For the code of a function, type

type function_name

For help for any function, type

instrhelp function_name

You can change the way any toolbox function works by copying and renaming the file,
then modifying your copy. You can also extend the toolbox by adding your own files, or by
using it in combination with other products such as MATLAB Report Generator™or Data
Acquisition Toolbox™ product.

To use the Instrument Control Toolbox product, you should be familiar with the:

• Basic features of MATLAB.
• Appropriate commands used to communicate with your instrument. These commands

might use the SCPI language or they might be methods associated with an IVI,
VXIplug&play, or MATLAB instrument driver.

• Features of the interface associated with your instrument.

Learning About the Instrument Control Toolbox Software

Start with this set of topics, which describe how to examine your hardware resources,
how to communicate with your instrument, how to get online help, and so on. Then click
on the Getting Started link at the top of the page and read the topics contained there,
which provide a framework for constructing instrument control applications. Depending
on the interface used by your instrument, you might then want to read the appropriate
interface-specific chapter.

1 Getting Started

1-4

http://www.mathworks.com/products/instrument/related.html

If you want detailed information about a specific function, refer to the functions
documentation. If you want detailed information about a specific property, refer to the
properties documentation.

Using the Documentation Examples

The examples in this guide use specific instruments such as a Tektronix® TDS 210 two-
channel oscilloscope or an Agilent 33120A function generator. Additionally, the GPIB
examples use a National Instruments® GPIB controller and the serial port examples use
the Windows® specific COM1 serial port. The string commands written to these
instruments are often unique to the vendor, and the address information such as the
board index or primary address associated with the hardware reflects a specific
configuration.

These examples appear throughout the documentation. You should modify the examples
to work with your specific hardware configuration.

 Instrument Control Toolbox Overview

1-5

About Instrument Control
In this section...
“Passing Information Between the MATLAB Workspace and Your Instrument” on page
1-6
“MATLAB Functions” on page 1-8
“Interface Driver Adaptor” on page 1-9

Passing Information Between the MATLAB Workspace and Your
Instrument

Instrument Control Toolbox software consists of two distinct components: MATLAB
functions and interface driver adaptors. These components allow you to pass information
between the MATLAB workspace and your instrument. For example, the following
diagram shows how information passes from the MATLAB software to an instrument via
the GPIB driver and the GPIB controller.

1 Getting Started

1-6

This diagram illustrates how information flows from component to component.
Information consists of

• Property values

You define the behavior of your instrument control application by configuring
property values. In general, you can think of a property as a characteristic of the
toolbox or of the instrument that can be configured to suit your needs.

 About Instrument Control

1-7

• Data

You can write data to the instrument and read data from the instrument. Data can be
binary (numerical) or formatted as text. Writing text often involves writing string
commands that change hardware settings, or prepare the instrument to return data
or status information, while writing binary data involves writing numerical values
such as calibration or waveform data.

• Events

An event occurs after a condition is met and might result in one or more callbacks.
Events can be generated only after you configure the associated properties. For
example, you can use events to analyze data after a certain number of bytes are read
from the instrument, or display a message to the MATLAB command line after an
error occurs.

MATLAB Functions

To perform any task within your instrument control application, you must call MATLAB
functions from the MATLAB workspace. Among other things, these functions allow you
to:

• Create instrument objects, which provide a gateway to your instrument's capabilities
and allow you to control the behavior of your application.

• Connect the object to the instrument.
• Configure property values.
• Write data to the instrument, and read data from the instrument.
• Examine your hardware resources and evaluate your application status.

For a listing of all Instrument Control Toolbox software functions, refer to the functions
documentation. You can also display the toolbox functions by typing

help instrument

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

1 Getting Started

1-8

Interface Driver Adaptor

The interface driver adaptor (or just adaptor) is the link between the toolbox and the
interface driver. The adaptor's main purpose is to pass information between the
MATLAB workspace and the interface driver. Interface drivers are provided by your
instrument vendor. For example, if you are communicating with an instrument using a
National Instruments GPIB controller, then an interface driver such as NI-488.2 must be
installed on your platform. Note that interface drivers are not installed as part of the
Instrument Control Toolbox software.

Instrument Control Toolbox software provides adaptors for the GPIB interface and the
VISA standard. The serial port, TCP/IP, and UDP interfaces do not require an adaptor.
Interface Adaptors

Interface Adaptor Name
GPIB agilent, ics, mcc, ni
Serial port N/A
TCP/IP N/A
UDP N/A
VISA standard agilent, ni, tek

As described in “Examining Your Hardware Resources” on page 1-14, you can list the
supported interfaces and adaptor names with the instrhwinfo function.

 About Instrument Control

1-9

Installation Information

In this section...
“Installation Requirements” on page 1-10
“Toolbox Installation” on page 1-10
“Hardware and Driver Installation” on page 1-11

Installation Requirements

To communicate with your instrument from the MATLAB workspace, you must install
these components:

• MATLAB
• Instrument Control Toolbox software

Additionally, you might need to install hardware such as a GPIB controller and vendor-
specific software such as drivers, support libraries, and so on. For a complete list of all
supported vendors, refer to “Interface Driver Adaptor” on page 1-9.

Toolbox Installation

To determine if Instrument Control Toolbox software is installed on your system, type

ver

at the MATLAB Command Window. The MATLAB Command Window displays
information about the version of the MATLAB software you are running, including a list
of installed add-on products and their version numbers. Check the list to see if
Instrument Control Toolbox appears.

For information about installing the toolbox, refer to the installation documentation for
your platform. If you experience installation difficulties, look for the installation and
license information at the MathWorks® Web site (http://www.mathworks.com/
support).

1 Getting Started

1-10

http://www.mathworks.com/support
http://www.mathworks.com/support

Hardware and Driver Installation

Installation of hardware devices such as GPIB controllers, instrument drivers, support
libraries, and so on is described in the documentation provided by the instrument vendor.
Many vendors provide the latest drivers through their Web site.

Note You must install all necessary device-specific software provided by the instrument
vendor in addition to the Instrument Control Toolbox software.

 Installation Information

1-11

Supported Hardware
The following table lists the hardware support for the Instrument Control Toolbox. Notes
follow the table.
Feature 64-bit MATLAB on

Windows
64-bit MATLAB on
Mac OS

64-bit MATLAB on
Linux

Serial supported supported supported
TCP/IP supported supported supported
UDP supported supported supported
VISA 3 supported 1 supported on one

vendor 1, 3
supported 1

GPIB 4 supported 1 supported 1

I2C 5 supported 1 supported 1 supported 1

SPI 5 supported 1 supported 1 supported 1

Bluetooth 6 supported supported
MODBUS supported supported supported
Quick-Control
Oscilloscope and
Quick-Control
Function Generator

supported 2 supported 2 supported 2

MATLAB
Instrument Drivers

supported supported supported

MATLAB
Instrument Drivers
made using IVI-C
drivers and
Instrument
Wrappers for IVI-C
drivers

supported 1

Table Notes

1. Dependent on support by third-party vendor driver for the hardware on this platform.

2. Dependent on third-party vendor support of platform when using an IVI-driver with
Quick-Control Oscilloscope or Quick-Control Function Generator.

1 Getting Started

1-12

3. Requires Agilent, National Instruments, Tektronix, or TAMS VISA compliant with
VISA specification 5.0 or higher for any platform. Only National Instruments VISA is
supported on macOS. The other vendors’ VISA support does not include macOS.

4. Requires Keysight™ (formerly Agilent), ICS Electronics™, Measurement Computing™
(MCC), ADLINK Technology, or National Instruments hardware and driver.

5. Requires Aardvark or National Instruments hardware and driver.

6. Bluetooth Serial Port Profile only.

 Supported Hardware

1-13

Examining Your Hardware Resources
In this section...
“instrhwinfo Function” on page 1-14
“Test & Measurement Tool” on page 1-18
“Viewing the IVI Configuration Store” on page 1-19

instrhwinfo Function
You can examine the hardware-related resources visible to the toolbox with the
instrhwinfo function. The specific information returned by instrhwinfo depends on
the supplied arguments, and is divided into these categories:

• “General Toolbox Information” on page 1-14
• “Interface Information” on page 1-14
• “Adaptor Information” on page 1-15
• “Instrument Object Information” on page 1-16
• “Installed Driver Information” on page 1-17

General Toolbox Information

For general information about the Instrument Control Toolbox, type:

instrhwinfo

 MATLABVersion: '7.0 (R14)'
 SupportedInterfaces: {'gpib' 'serial' 'visa' 'tcpip' 'udp'}
 SupportedDrivers: {'matlab' 'vxipnp' 'ivi'}
 ToolboxName: 'Instrument Control Toolbox'
 ToolboxVersion: '2.0 (R14)'

The SupportedInterfaces and SupportedDrivers fields list the interfaces and
drivers supported by the toolbox, and not necessarily those installed on your computer.

Interface Information

To display information about a specific interface, you supply the interface name as an
argument to instrhwinfo. The interface name can be gpib, serial, tcpip, udp, or
visa.

1 Getting Started

1-14

For the GPIB and VISA interfaces, the information includes installed adaptors. For the
serial port interface, the information includes the available ports. For the TCP/IP and
UDP interfaces, the information includes the local host address. For example, to display
the GPIB interface information:

out = instrhwinfo('gpib')
out =

 InstalledAdaptors: {'ics' 'ni'}
 JarFileVersion: 'Version 2.0 (R14)'

The InstalledAdaptors field indicates that ICS Electronics (ICS) and National
Instruments drivers are installed. Therefore, you can communicate with instruments
using GPIB controllers from these vendors.

Adaptor Information

To display information about a specific installed adaptor, you supply the interface name
and the adaptor name as arguments to instrhwinfo.
Interface Name Adaptor Name
gpib agilent, ics, mcc, adlink, ni
visa agilent, ni, tek

The returned information describes the adaptor, the vendor driver, and the object
constructors. For example, to display information for the National Instruments GPIB
adaptor,

ghwinfo = instrhwinfo('gpib','ni')

ghwinfo =

 AdaptorDllName: [1x82 char]
 AdaptorDllVersion: 'Version 2.0 (R14)'
 AdaptorName: 'NI'
 InstalledBoardIds: 0
 ObjectConstructorName: {'gpib('ni', 0, 2);'}
 VendorDllName: 'gpib-32.dll'
 VendorDriverDescription: 'NI-488'

The ObjectConstructorName field provides the syntax for creating a GPIB object for
the National Instruments adaptor. In this example, the GPIB controller has board index
0 and the instrument has primary address 2.

 Examining Your Hardware Resources

1-15

g = gpib('ni',0,2);

To display information for the Tektronix VISA adaptor,

vhwinfo = instrhwinfo('visa','tek')
vhwinfo =

 AdaptorDllName: [1x83 char]
 AdaptorDllVersion: 'Version 2.0 (R14 Beta 1)'
 AdaptorName: 'TEK'
 AvailableChassis: []
 AvailableSerialPorts: {2x1 cell}
 InstalledBoardIds: 0
 ObjectConstructorName: {3x1 cell}
 SerialPorts: {2x1 cell}
 VendorDllName: 'visa32.dll'
 VendorDriverDescription: 'Tektronix VISA Driver'
 VendorDriverVersion: 2.0500

The available VISA object constructor names are shown below.

vhwinfo.ObjectConstructorName
ans =

 'visa('tek', 'ASRL1::INSTR');'
 'visa('tek', 'ASRL2::INSTR');'
 'visa('tek', 'GPIB0::1::INSTR');'

The ObjectConstructorName field provides the syntax for creating a VISA object for
the GPIB and serial port interfaces. In this example, the GPIB controller has board index
0 and the instrument has primary address 1.

vg = visa('tek','GPIB0::1::INSTR');

Instrument Object Information

To display information about a specific instrument object, you supply the object as an
argument to instrhwinfo. For example, to display information for the GPIB object
created in the (“Adaptor Information” on page 1-15), type:

ghwinfo = instrhwinfo(g)
ghwinfo =

 AdaptorDllName: [1x82 char]
 AdaptorDllVersion: 'Version 2.0 (R14)'

1 Getting Started

1-16

 AdaptorName: 'NI'
 VendorDllName: 'gpib-32.dll'
 VendorDriverDescription: 'NI-488'

To display information for the VISA-GPIB object created in the (“Adaptor Information”
on page 1-15), type:

vghwinfo = instrhwinfo(vg)
vghwinfo =

 AdaptorDllName: [1x83 char]
 AdaptorDllVersion: 'Version 2.0 (R14)'
 AdaptorName: 'TEK'
 VendorDllName: 'visa32.dll'
 VendorDriverDescription: 'Tektronix VISA Driver'
 VendorDriverVersion: 2.0500

Alternatively, you can return hardware information via the Workspace browser by right-
clicking an instrument object, and selecting Display Hardware Info from the context
menu.

Installed Driver Information

To display information about a supported driver type, you supply the driver type as an
argument to instrhwinfo. For example, to display information for the IVI
configuration, type:
instrhwinfo('ivi')
ans =
 LogicalNames: {'MyIviCLogical' 'MyScope' 'TekScope'}
 ProgramIDs: {'TekScope.TekScope'}
 Modules: {'ag3325b'}
ConfigurationServerVersion: '1.3.1.0'
 MasterConfigurationStore: 'D:\Apps\IVI\Data\IviConfigurationStore.xml'
 IVIRootPath: 'D:\Apps\IVI\'

To display information about a specific driver or resource, you supply the driver name in
addition to the type as an argument to instrhwinfo. For example, to display
information about the ag3325b VXIplug&play driver:

instrhwinfo('vxipnp', 'ag3325b')
ans =
 Manufacturer: 'Agilent Technologies'
 Model: 'Agilent 3325B Synthesizer/Func. Gen.'
 DriverVersion: '4.1'
 DriverDllName: 'C:\VXIPNP\WINNT\bin\ag3325b_32.dll'

 Examining Your Hardware Resources

1-17

Test & Measurement Tool

You can use the Test & Measurement Tool (tmtool) to manage the resources of your
instrument control session. You can use this tool to:

• Search for installed adaptors.
• Examine available hardware.
• Examine installed drivers.
• Examine instrument objects.

To open the Test & Measurement Tool, type:

tmtool

Hardware

Expand the Hardware node in the tree to list the supported interfaces.

Right-click the Hardware node to scan for instrument hardware. The interface nodes
expand to include entries for each instrument found by the scan.

1 Getting Started

1-18

Installed Drivers

The Test & Measurement Tool can display your installed drivers. The three categories of
drivers are MATLAB Instrument Drivers, VXIplug&play Drivers, and IVI, as
shown below under the expanded Instrument Drivers node.

Right-click the Instrument Drivers node to scan for installed drivers. The driver-type
nodes expand to include entries for each driver found by the scan. Note that for MATLAB
instrument drivers and VXIplug&play drivers, the installation of a driver requires only
the presence of a driver file. For IVI, installation involves an IVI configuration store; see
“Viewing the IVI Configuration Store” on page 1-19.

The Test & Measurement Tool GUI includes embedded help. For further details about
the Test & Measurement Tool and its capabilities, see “Test & Measurement Tool
Overview” on page 18-2.

Viewing the IVI Configuration Store

An IVI configuration store greatly enhances instrument interchangeability by providing
the means to configure the relationship between drivers and I/O interface references
outside of the application. For details of the components of an IVI configuration store, see
“IVI Configuration Store” on page 14-15.

 Examining Your Hardware Resources

1-19

Command-Line Configuration

You can use command-line functions to examine and configure your IVI configuration
store. To see what IVI configuration store elements are available, use instrhwinfo to
identify the existing logical names.

instrhwinfo('ivi')
ans =
 LogicalNames: {'MainScope', 'FuncGen'}
 ProgramIDs: {'TekScope.TekScope','Agilent33250'}
 Modules: {'ag3325b', 'hpe363xa'}
ConfigurationServerVersion: '1.3.1.0'
 MasterConfigurationStore: 'C:\Program Files\IVI\Data\
 IviConfigurationStore.xml'
 IVIRootPath: 'C:\Program Files\IVI\'

Use instrhwinfo with a logical name as an argument to see the details of that logical
name's configuration.

instrhwinfo('ivi','MainScope')
ans =
 DriverSession: 'TekScope.DriverSession'
 HardwareAsset: 'TekScope.Hardware'
 SoftwareModule: 'TekScope.Software'
 IOResourceDescriptor: 'GPIB0::13::INSTR'
SupportedInstrumentModels: 'TekScope 5000, 6000 and 7000 series'
 ModuleDescription: 'TekScope software module desc'
 ModuleLocation: ''

You create and configure elements in the IVI configuration store by using the IVI
configuration store object functions add, commit, remove, and update. For further
details, see the reference pages for these functions.

Using the Test & Measurement Tool

You can use the Test & Measurement Tool to examine or configure your IVI
configuration store. To open the tool, type:

tmtool

Expand the Instrument Drivers node and click IVI.

1 Getting Started

1-20

You see a tab for each type of IVI configuration store element. This figure shows the
available driver sessions in the current IVI configuration store. For the selected driver
session, you can use any available software module or hardware asset. This figure shows
the configuration for the driver session TekScope.DriverSession, which uses the
software module TekScope.Software and the hardware asset TekScope.Hardware.

 Examining Your Hardware Resources

1-21

Communicating with Your Instrument
In this section...
“Instrument Control Session Examples” on page 1-22
“Communicating with a GPIB Instrument” on page 1-22
“Communicating with a GPIB-VXI Instrument” on page 1-23
“Communicating with a Serial Port Instrument” on page 1-24
“Communicating with a GPIB Instrument Using a Device Object” on page 1-25

Instrument Control Session Examples
Each example illustrates a typical instrument control session. The instrument control
session comprises all the steps you are likely to take when communicating with a
supported instrument. You should keep these steps in mind when constructing your own
instrument control applications.

The examples also use specific instrument addresses, SCPI commands, and so on. If your
instrument requires different parameters, or if it does not support the SCPI language,
you should modify the examples accordingly. For more information, see Using SCPI
Commands on page 3-25.

If you want detailed information about any functions that are used, refer to the functions
documentation. If you want detailed information about any properties that are used,
refer to the properties documentation.

Communicating with a GPIB Instrument
This example illustrates how to communicate with a GPIB instrument. The GPIB
controller is a National Instruments AT-GPIB card. The instrument is an Agilent 33120A
Function Generator, which is generating a 2 volt peak-to-peak signal.

You should modify this example to suit your specific instrument control application
needs. If you want detailed information about communicating with an instrument via
GPIB, refer to “GPIB Overview” on page 4-2.

1 Create an interface object — Create the GPIB object g associated with a National
Instruments GPIB board with board index 0, and an instrument with primary
address 1.

1 Getting Started

1-22

g = gpib('ni',0,1);
2 Connect to the instrument — Connect g to the instrument.

fopen(g)
3 Configure property values — Configure g to assert the EOI line when the line

feed character is written to the instrument, and to complete read operations when
the line feed character is read from the instrument.
g.EOSMode = 'read&write'
g.EOSCharCode = 'LF'

4 Write and read data — Change the instrument's peak-to-peak voltage to three
volts by writing the Volt 3 command, query the peak-to-peak voltage value, and
then read the voltage value.
fprintf(g,'Volt 3')
fprintf(g,'Volt?')
data = fscanf(g)
data =
+3.00000E+00

5 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, remove it from memory, and remove it from the MATLAB
workspace.
fclose(g)
delete(g)
clear g

Communicating with a GPIB-VXI Instrument
This example illustrates how to communicate with a VXI instrument via a GPIB
controller using the VISA standard provided by Agilent Technologies.

The GPIB controller is an Agilent E1406A command module in VXI slot 0. The
instrument is an Agilent E1441A Function/Arbitrary Waveform Generator in VXI slot 1,
which is outputting a 2 volt peak-to-peak signal. The GPIB controller communicates with
the instrument over the VXI backplane.

You should modify this example to suit your specific instrument control application
needs. If you want detailed information about communicating with an instrument using
VISA, refer to “VISA Overview” on page 5-2.

1 Create an instrument object — Create the VISA-GPIB-VXI object v associated
with the E1441A instrument located in chassis 0 with logical address 80.

 Communicating with Your Instrument

1-23

v = visa('agilent','GPIB-VXI0::80::INSTR');
2 Connect to the instrument — Connect v to the instrument.

fopen(v)
3 Configure property values — Configure v to complete a read operation when the

line feed character is read from the instrument.

v.EOSMode = 'read'
v.EOSCharCode = 'LF'

4 Write and read data — Change the instrument's peak-to-peak voltage to three
volts by writing the Volt 3 command, query the peak-to-peak voltage value, and
then read the voltage value.

fprintf(v,'Volt 3')
fprintf(v,'Volt?')
data = fscanf(v)
data =
+3.00000E+00

5 Disconnect and clean up — When you no longer need v, you should disconnect it
from the instrument, remove it from memory, and remove it from the MATLAB
workspace.

fclose(v)
delete(v)
clear v

Communicating with a Serial Port Instrument

This example illustrates how to communicate with an instrument via the serial port. The
instrument is a Tektronix TDS 210 two-channel digital oscilloscope connected to the
serial port of a PC, and configured for a baud rate of 4800 and a carriage return (CR)
terminator.

You should modify this example to suit your specific instrument control application
needs. If you want detailed information about communicating with an instrument
connected to the serial port, refer to “Serial Port Overview” on page 6-2.

Note This example is Windows specific.

1 Getting Started

1-24

1 Create an instrument object — Create the serial port object s associated with the
COM1 serial port.

s = serial('COM1');
2 Configure property values — Configure s to match the instrument's baud rate

and terminator.

s.BaudRate = 4800
s.Terminator = 'CR'

3 Connect to the instrument — Connect s to the instrument. This step occurs after
property values are configured because serial port instruments can transfer data
immediately after the connection is established.

fopen(s)
4 Write and read data — Write the *IDN? command to the instrument and then

read back the result of the command. *IDN? queries the instrument for
identification information.

fprintf(s,'*IDN?')
out = fscanf(s)
out =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

5 Disconnect and clean up — When you no longer need s, you should disconnect it
from the instrument, remove it from memory, and remove it from the MATLAB
workspace.

fclose(s)
delete(s)
clear s

Communicating with a GPIB Instrument Using a Device Object

This example illustrates how to communicate with a GPIB instrument through a device
object. The GPIB controller is a Measurement Computing card, and the instrument is an
Agilent 33120A Function Generator, which you set to produce a 1 volt peak-to-peak sine
wave at 1,000 Hz. Device objects use instrument drivers; this example uses the driver
agilent_33120a.mdd.

You should modify this example to suit your specific instrument control application
needs. If you want detailed information about communicating through device objects, see
“Device Objects” on page 12-2.

 Communicating with Your Instrument

1-25

1 Create instrument objects — Create the GPIB object g associated with a
Measurement Computing GPIB board with board index 0, and an instrument with
primary address 4. Then create the device object d associated with the interface
object g, and with the instrument driver agilent_33120a.mdd.

g = gpib('mcc',0,4);
d = icdevice('agilent_33120a.mdd',g);

2 Connect to the instrument — Connect d to the instrument.

connect(d)
3 Call device object method — Use the devicereset method to set the generator

to a known configuration. The behavior of the generator for this method is defined in
the instrument driver.

devicereset(d)
4 Configure property values — Configure d to set the amplitude and frequency for

the signal from the function generator.

d.Amplitude = 1.00
d.AmplitudeUnits = 'vpp'
d.Frequency = 1000

5 Disconnect and clean up — When you no longer need d and g, you should
disconnect from the instrument, remove the objects from memory, and remove them
from the MATLAB workspace.

disconnect(d)
delete([d g])
clear d g

1 Getting Started

1-26

General Preferences for Instrument Control
In this section...
“Accessing General Preferences” on page 1-27
“MATLAB Instrument Driver Editor” on page 1-28
“MATLAB Instrument Driver Testing Tool” on page 1-29
“Device Objects” on page 1-30
“IVI Configuration Store” on page 1-31
“IVI Instruments” on page 1-31

Accessing General Preferences

You access the general preferences from MATLAB – on the Home tab, in the
Environment section, click Preferences. In the Preferences dialog box, there are two
options listed for Instrument Control under the MATLAB > General node, in
Confirmation Dialogs.

 General Preferences for Instrument Control

1-27

MATLAB Instrument Driver Editor

The first option for Instrument Control is related to the MATLAB Instrument Driver
Editor (midedit).

When the option Prompt when editing drivers that do not exist is selected, if you
open the MATLAB Instrument Driver Editor while specifying a driver file that does not
exist, you get a prompt asking if you want to create a new driver file.

For example, the command

midedit ('newdriver')

1 Getting Started

1-28

generates the prompt

If you select Do not show this prompt again, the corresponding check box in the
Preferences dialog box is cleared, in which case the MATLAB Instrument Driver Editor
creates new driver files without prompting. To reactivate the prompt, select the option on
the Preferences dialog box.

MATLAB Instrument Driver Testing Tool

The second option for Instrument Control is related to the MATLAB Instrument Driver
Testing Tool (midtest).

When the option Prompt when editing driver tests that do not exist is selected, if
you open the MATLAB Instrument Driver Testing Tool while specifying a driver test file
that does not exist, you get a prompt asking if you want to create a new test file.

For example, the command

midtest ('newtest')

generates the prompt

If you select Do not show this prompt again, the corresponding check box in the
Preferences dialog box is cleared, in which case the MATLAB Instrument Driver Testing
Tool creates new driver test files without prompting. To reactivate the prompt, check the
option on the Preferences dialog box.

 General Preferences for Instrument Control

1-29

Device Objects

You access other Instrument Control Preferences by selecting the Instrument Control
Toolbox node in the tree.

The Device Objects section of the dialog box contains preferences related to the
construction and use of device objects for VXIplug&play and IVI-C drivers.

Here you set the minimum number of properties and functions required to create a
device object group, and the default size of character arrays passed as output arguments
to device object functions.

1 Getting Started

1-30

Set the default size for these character arrays in the Preferences dialog box to ensure
that they are large enough to accommodate any string returned to them by any device
object functions. You can reduce the default character array size to avoid unnecessary
memory usage, as long as they are still large enough to accommodate any expected
strings.

IVI Configuration Store

The IVI Configuration Store section of the dialog box contains preferences related to
the construction and use of IVI configuration store objects when you are working in the
Command Window or in the Test & Measurement Tool (tmtool).

You can select either a master configuration store or a user-defined configuration store.
If you choose a user-defined configuration store, you must provide its file name.

IVI Instruments

You can use the IVI-C Wrappers functionality from the Test & Measurement Tool. View
the IVI-C nodes in the Tool by selecting this Show IVI Instruments in TMTool
preference in MATLAB.

For more information, see “IVI-C Class Compliant Wrappers in Test & Measurement
Tool” on page 14-23.

 General Preferences for Instrument Control

1-31

Interface and Property Help

In this section...
“instrhelp Function” on page 1-32
“propinfo Function” on page 1-33
“instrsupport Function” on page 1-34
“Overview Help” on page 1-34
“Documentation Examples” on page 1-34
“Online Support” on page 1-35

instrhelp Function

You can use the instrhelp function to:

• Display command-line help for functions and properties.
• List all the functions and properties associated with a specific instrument object.

An instrument object is not only for you to obtain this information. For example, to
display all functions and properties associated with a GPIB object, as well as the
constructor help, type:

instrhelp gpib

To display help for the EOIMode property, type:

instrhelp EOIMode

You can also display help for an existing instrument object. For example, to display help
for the MemorySpace property associated with a VISA-GPIB-VXI object, type:

v = visa('agilent','GPIB-VXI0::80::INSTR');
out = instrhelp(v,'MemorySpace');

Alternatively, you can display help via the Workspace browser by right-clicking an
instrument object and selecting Instrument Help from the context menu.

1 Getting Started

1-32

propinfo Function

You can use the propinfo function to return the characteristics of the Instrument
Control Toolbox properties. For example, you can find the default value for any property
using this function. propinfo returns a structure containing the following fields:
Field Name Description
Type The property data type. Possible values are any, ASCII

value, callback, double, string, and struct.
Constraint The type of constraint on the property value. Possible values

are ASCII value, bounded, callback, enum, and none.
ConstraintValue The property value constraint. The constraint can be a range

of values or a list of character vector values.
DefaultValue The property default value.
ReadOnly The condition under which a property is read only. Possible

values are always, never, whileOpen, and
whileRecording.

InterfaceSpecific If the property is interface-specific, a 1 is returned. If the
property is supported for all interfaces, a 0 is returned.

For example, to display the property characteristics for the EOIMode property associated
with the GPIB object g,

g = gpib('ni',0,2);
EOIinfo = propinfo(g,'EOIMode')

EOIinfo =
 Type: 'string'
 Constraint: 'enum'
 ConstraintValue: {2x1 cell}
 DefaultValue: 'on'
 ReadOnly: 'never'
 InterfaceSpecific: 1

This information tells you the following:

• The property value data type is a character vector.
• The property value is constrained as an enumerated list of values.

 Interface and Property Help

1-33

• There are two possible property values.
• The default value is on.
• The property can be configured at any time (it is never read-only).
• The property is not supported for all interfaces.

To display the property value constraints,

EOIinfo.ConstraintValue
ans =
 'on'
 'off'

instrsupport Function

Execute this function to get diagnostic information for all installed hardware adaptors on
your system. The information is stored in a text file, instrsupport.txt in your current
folder and you can use this information to troubleshoot issues.

Overview Help

The overview help lists the toolbox functions grouped by usage. You can display this
information by typing

help instrument

For the code for any function, type

type function_name

Documentation Examples

This guide provides detailed examples that show you how to communicate with all
supported interface types. These examples are contained in all the appropriate sections
throughout the documentation. For example, in the sections about Bluetooth
communication, you will find examples of communicating with Bluetooth instruments.

The examples use specific peripheral instruments, GPIB controllers, string commands,
address information, and so on. If your instrument accepts different string commands, or
if your hardware is configured to use different address information, you should modify
the examples accordingly.

1 Getting Started

1-34

There are also some examples that show special applications of the Toolbox or show
complete workflows of certain features or interfaces. These appear in the Examples list
at the top of the Instrument Control Toolbox Documentation Center main page. You do
not need an instrument connected to your computer to use these tutorials as they use
prerecorded data.

Online Support

For online support of Instrument Control Toolbox software, visit the Web site http://
www.mathworks.com/support/. This site includes documentation, examples, solutions,
downloads, system requirements, and contact information.

 Interface and Property Help

1-35

http://www.mathworks.com/support/
http://www.mathworks.com/support/

Instrument Control Session

The instrument control session consists of the steps you are likely to take when
communicating with your instrument. This chapter highlights some of the differences
between interface objects and device objects for each of these steps, to help you decide
which to use in communicating with your instrument. Whether you use interface objects
or device objects, the basic steps of the instrument control session remain the same, as
outlined in this chapter.

• “Creating Instrument Objects” on page 2-2
• “Connecting to the Instrument” on page 2-4
• “Configuring and Returning Properties” on page 2-5
• “Communicating with Your Instrument” on page 2-8
• “Disconnecting and Cleaning Up” on page 2-9
• “Summary” on page 2-10
• “Instrument Control Toolbox Properties” on page 2-12

2

Creating Instrument Objects
In this section...
“Overview” on page 2-2
“Interface Objects” on page 2-2
“Device Objects” on page 2-2

Overview
Instrument objects are the toolbox components you use to access your instrument. They
provide a gateway to the functionality of your instrument and allow you to control the
behavior of your application. The Instrument Control Toolbox software supports two
types of instrument objects:

• Interface objects — Interface objects are associated with a specific interface standard
such as GPIB or VISA. They allow you to communicate with any instrument
connected to the interface.

• Device objects — Device objects are associated with a MATLAB instrument driver.
They allow you to communicate with your instrument using properties and functions
defined in the driver for a specific instrument model.

Interface Objects
An interface object represents a channel of communication. For example, an interface
object might represent a device at address 4 on the GPIB, even though there is nothing
specific about what kind of instrument this may be.

To create an instrument object, you call the constructor for the type of interface (gpib,
serial, tcpip, udp, or visa), and provide appropriate interface information, such as
address for GPIB, remote host for TCP/IP, or port number for serial.

For detailed information on interface objects and how to create and use them, see
“Creating an Interface Object” on page 3-2.

Device Objects
A device object represents an instrument rather than an interface. As part of that
representation, a device object must also be aware of the instrument driver.

2 Instrument Control Session

2-2

You create a device object with the icdevice function. A device object requires a
MATLAB instrument driver and some form of instrument interface, which can be an
interface object, a VISA resource name, or an interface implied in an IVI configuration.

For detailed information on device objects and how to create and use them, see “Device
Objects” on page 12-2.

 Creating Instrument Objects

2-3

Connecting to the Instrument
Before you can use an instrument object to write or read data, you must connect it to the
instrument. You connect an interface object to the instrument with the fopen function;
you connect a device object to the instrument with the connect function.

You can examine the Status property to verify that the instrument object is connected
to the instrument.

obj.Status
ans =
open

Some properties of the object are read-only while the object is connected and must be
configured before connecting. Examples of interface object properties that are read-only
when the object is connected include InputBufferSize and OutputBufferSize. You
can determine when a property is configurable with the propinfo function or by
referring to the properties documentation.

2 Instrument Control Session

2-4

Configuring and Returning Properties
In this section...
“Configuring Property Names and Property Values” on page 2-5
“Returning Property Names and Property Values” on page 2-6
“Property Inspector” on page 2-6

Configuring Property Names and Property Values

You establish the desired instrument object behavior by configuring property values. You
can configure property values using the set function or the dot notation, or by specifying
property name/property value pairs during object creation. You can return property
values using the get function or the dot notation.

Interface objects possess two types of properties: base properties and interface-specific
properties. (These properties pertain only to the interface object itself and to the
interface, not to the instrument.) Base properties are supported for all interface objects
(serial port, GPIB, VISA-VXI, and so on), while interface-specific properties are
supported only for objects of a given interface type. For example, the BaudRate property
is supported only for serial port and VISA-serial objects.

Device objects also possess two types of properties: base properties and device-specific
properties. While device objects possess base properties pertaining to the object and
interface, they also possess any number of device-specific properties as defined in the
instrument driver for configuring the instrument. For example, a device object
representing an oscilloscope might posses such properties as DisplayContrast,
InputRange, and MeasurementMode. When you set these properties you are directly
configuring the oscilloscope settings.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

 Configuring and Returning Properties

2-5

Returning Property Names and Property Values

Once the instrument object is created, you can use the set function to return all its
configurable properties to a variable or to the command line. Additionally, if a property
has a finite set of character vector values, set returns these values.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Property Inspector

The Property Inspector enables you to inspect and set properties for one or more
instrument objects. It provides a list of all properties and displays their current values.

Settable properties in the list are associated with an editing device that is appropriate for
the values accepted by the particular property. For example, a callback configuration
GUI to set ErrorFcn, a pop-up menu to set RecordMode, and a text field to specify the
TimerPeriod. The values for read-only properties are grayed out.

You open the Property Inspector with the inspect function. Alternatively, you can open
the Property Inspector via the Workspace browser by right-clicking an instrument object
and selecting Call Property Inspector from the context menu, or by double-clicking the
object.

2 Instrument Control Session

2-6

 Configuring and Returning Properties

2-7

Communicating with Your Instrument
In this section...
“Interface Objects and Instrument Commands” on page 2-8
“Device Objects and Instrument Drivers” on page 2-8

Interface Objects and Instrument Commands

Communicating with your instrument involves sending and receiving commands,
settings, responses, and data. The level of communication depends on the type of
instrument object you use.

To communicate through the interface object, you need to send instrument commands,
and you receive information as the instrument sends it. Therefore, you have to know the
syntax specific to the instrument itself. For example, if the instrument requires the
command '*RST' to initiate its action, then that is exactly the command that must be
sent to the interface object.

Text commands and binary data are sent directly to the instrument and received from
the instrument with such functions as fprintf, fwrite, fgets, fread, and others.

Device Objects and Instrument Drivers

To communicate through a device object, you access object properties with the set and
get commands, and you execute driver functions with the invoke command. The
invoke command for a device object employs methods and arguments defined by the
instrument driver. So using device objects does not require you to use instrument-specific
commands and syntax.

For information on creating, editing, and importing instrument drivers, see “MATLAB
Instrument Driver Editor Overview” on page 19-2.

2 Instrument Control Session

2-8

Disconnecting and Cleaning Up

In this section...
“Disconnecting an Instrument Object” on page 2-9
“Cleaning Up the MATLAB Workspace” on page 2-9

Disconnecting an Instrument Object

When you no longer need to communicate with the instrument, you should disconnect the
object. Interface objects are disconnected with the fclose function; device objects are
disconnected with the disconnect function.

You can examine the Status property to verify that the object is disconnected from the
instrument.

obj.Status
ans =
closed

Cleaning Up the MATLAB Workspace

When you no longer need the instrument object, you should remove it from memory with
the delete function.

delete(obj)

A deleted instrument object is invalid, which means that you cannot connect it to the
instrument. In this case, you should remove the object from the MATLAB workspace. To
remove instrument objects and other variables from the MATLAB workspace, use the
clear command.

clear obj

If you use clear on an object that is connected to an instrument, the object is removed
from the workspace but remains connected to the instrument. You can restore cleared
instrument objects to the MATLAB workspace with the instrfind function.

 Disconnecting and Cleaning Up

2-9

Summary
In this section...
“Advantages of Using Device Objects” on page 2-10
“When to Use Interface Objects” on page 2-10

Advantages of Using Device Objects

Should you use interface objects or device objects to communicate with your instrument?
Generally, device objects make instrument control easier and they offer greater flexibility
to the user compared to using interface objects.

Because of the advantages offered by using device objects for communicating with your
instrument, you should use device objects whenever possible. Some of these advantages
are

• You do not need to know instrument-specific commands
• You can use standard VXIplug&play or IVI instrument drivers provided by your

instrument vendor or other party
• You can use a MATLAB instrument driver to control your instrument. To get a

MATLAB instrument driver, you can

• Convert a VXIplug&play or IVI driver
• Use a MATLAB driver that is shipped with the toolbox
• Create it yourself or modify a similar driver
• Install it from a third party, such as MATLAB Central

You can create, convert, or customize a MATLAB instrument driver with the
MATLAB Instrument Driver Editor tool (midedit).

When to Use Interface Objects

In some circumstances, using device objects to communicate with your instrument would
be impossible or impractical. You might need to use interface objects if

• Your instrument does not have a standard instrument driver supported by the
Instrument Control Toolbox software.

2 Instrument Control Session

2-10

• You are using a streaming application (typically serial, UDP, or TCP/IP interface) to
notify you of some occurrence.

• Your application requires frequent changes to communication channel settings.

 Summary

2-11

Instrument Control Toolbox Properties
The following properties are available in the toolbox.

• ActualLocation
• Alias
• BaudRate
• BoardIndex
• BreakInterruptFcn
• BusManagementStatus
• ByteOrder
• BytesAvailableFcn
• BytesAvailableFcnCount
• BytesAvailableFcnMode
• BytesToOutput
• ChassisIndex
• CompareBits
• ConfirmationFcn
• DataBits
• DatagramAddress
• DatagramPort
• DatagramReceivedFcn
• DatagramTerminateMode
• DataTerminalReady
• DriverName
• DriverSessions
• DriverType
• EOIMode
• EOSCharCode
• EOSMode
• ErrorFcn

2 Instrument Control Session

2-12

• FlowControl
• HandshakeStatus
• HardwareAssets
• HwIndex
• HwName
• InputBufferSize
• InputDatagramPacketSize
• InstrumentModel
• Interface
• InterfaceIndex
• InterruptFcn
• LANName
• LocalHost
• LocalPort
• LocalPortMode
• LogicalAddress
• LogicalName
• LogicalNames
• ManufacturerID
• MappedMemoryBase
• MappedMemorySize
• MasterLocation
• MemoryBase
• MemoryIncrement
• MemorySize
• MemorySpace
• ModelCode
• Name
• NetworkRole
• ObjectVisibility

 Instrument Control Toolbox Properties

2-13

• OutputBufferSize
• OutputDatagramPacketSize
• OutputEmptyFcn
• Parent
• Parity
• PinStatus
• PinStatusFcn
• Port
• PrimaryAddress
• ProcessLocation
• PublishedAPIs
• ReadAsyncMode
• RecordDetail
• RecordMode
• RecordName
• RecordStatus
• RemoteHost
• RemotePort
• RequestToSend
• Revision
• RsrcName
• SecondaryAddress
• SerialNumber
• ServerDescription
• Sessions
• Slot
• SoftwareModules
• SpecificationVersion
• Status
• StopBits

2 Instrument Control Session

2-14

• Tag
• Terminator
• Timeout
• TimerFcn
• TimerPeriod
• TransferDelay
• TransferStatus
• TriggerFcn
• TriggerLine
• TriggerType
• Type
• UserData
• ValuesReceived
• ValuesSent
• Vendor

 Instrument Control Toolbox Properties

2-15

Using Interface Objects

The instrument control session using interface objects consists of all the steps described
in the following sections.

• “Creating an Interface Object” on page 3-2
• “Connecting to the Instrument” on page 3-5
• “Configuring and Returning Properties” on page 3-6
• “Writing and Reading Data” on page 3-14
• “Using SCPI Commands” on page 3-25
• “Disconnecting and Cleaning Up” on page 3-26

3

Creating an Interface Object

In this section...
“Object Creation Functions” on page 3-2
“Configuring Properties During Object Creation” on page 3-3
“Creating an Array of Instrument Objects” on page 3-3

Object Creation Functions

To create an interface object, you call functions called object creation functions (or object
constructors). These files are implemented using MATLAB object-oriented programming
capabilities, which are described in the MATLAB documentation.
Interface Object Creation Functions

Constructor Description
gpib Create a GPIB object.
serial Create a serial port object.
tcpip Create a TCPIP object.
udp Create a UDP object.
visa Create a VISA-GPIB, VISA-VXI, VISA-GPIB-VXI, or VISA-serial object.
bluetooth Create a Bluetooth object.
i2c Create an I2C object.
spi Create a SPI object.
modbus Create a MODBUS object

You can find out how to create an interface object for a particular interface and adaptor
with the ObjectConstructorName field of the instrhwinfo function. For example, to
find out how to create a GPIB object for a National Instruments GPIB controller,

out = instrhwinfo('gpib','ni');
out.ObjectConstructorName
ans =
 'gpib('ni', 0, 1);'

3 Using Interface Objects

3-2

Configuring Properties During Object Creation

Instrument objects contain properties that reflect the functionality of your instrument.
You control the behavior of your instrument control application by configuring values for
these properties.

As described in “Configuring and Returning Properties” on page 3-6, you configure
properties using the set function or the dot notation. You can also configure properties
during object creation by specifying property name/property value pairs. For example,
the following command configures the EOSMode and EOSCharCode properties for the
GPIB object g:

g = gpib('ni',0,1,'EOSMode','read','EOSCharCode','CR');

If you specify an invalid property name or property value, the object is not created. For
detailed property descriptions, refer to the properties documentation.

Creating an Array of Instrument Objects

In the MATLAB workspace, you can create an array from existing variables by
concatenating those variables. The same is true for instrument objects. For example,
suppose you create the GPIB objects g1 and g2:

g1 = gpib('ni',0,1);
g2 = gpib('ni',0,2);

You can now create an instrument object array consisting of g1 and g2 using the usual
MATLAB syntax. To create the row array x:

x = [g1 g2]
Instrument Object Array

 Index: Type: Status: Name:
 1 gpib closed GPIB0-1
 2 gpib closed GPIB0-2

To create the column array y:

y = [g1;g2];

Note that you cannot create a matrix of instrument objects. For example, you cannot
create the matrix

 Creating an Interface Object

3-3

z = [g1 g2;g1 g2];
??? Error using ==> gpib/vertcat
Only a row or column vector of instrument objects can be created.

Depending on your application, you might want to pass an array of instrument objects to
a function. For example, using one call to the set function, you can configure both g1
and g2 to the same property value.

x.EOSMode = 'read'

Refer to the functions documentation to see which functions accept an instrument object
array as an input argument.

3 Using Interface Objects

3-4

Connecting to the Instrument
Before you can use the instrument object to write or read data, you must connect it to the
instrument whose address or port is specified in the creation function. You connect an
interface object to the instrument with the fopen function.

fopen(g)

Some properties are read-only while the object is connected and must be configured
before using fopen. Examples include the InputBufferSize and the
OutputBufferSize properties. You can determine when a property is configurable with
the propinfo function, or by referring to the properties documentation.

Note You can create any number of instrument objects. However, at any time, you can
connect only one instrument object to an instrument with a given address or port.

You can examine the Status property to verify that the instrument object is connected
to the instrument.

g.Status
ans =
open

As illustrated below, the connection between the instrument object and the instrument is
complete, and you can write and read data.

 Connecting to the Instrument

3-5

Configuring and Returning Properties

In this section...
“Base and Interface-Specific Properties” on page 3-6
“Returning Property Names and Property Values” on page 3-6
“Configuring Property Values” on page 3-9
“Specifying Property Names” on page 3-9
“Default Property Values” on page 3-10
“Using Tab Completion for Functions” on page 3-10
“Property Inspector” on page 3-12

Base and Interface-Specific Properties

You establish the desired instrument object behavior by configuring property values. You
can configure property values using the set function or the dot notation, or by specifying
property name/property value pairs during object creation. You can return property
values using the get function or the dot notation.

Interface objects possess two types of properties:

• Base Properties: These are supported for all interface objects (serial port, GPIB, VISA-
VXI, and so on). For example, the BytesToOutput property is supported for all
interface objects.

• Interface-Specific Properties: These are supported only for objects of a given interface
type. For example, the BaudRate property is supported only for serial port and VISA-
serial objects.

Returning Property Names and Property Values

Once the instrument object is created, you can set configurable properties. Additionally,
if a property has a finite set of character vector values, then set also returns these
values.

For example, the configurable properties for the GPIB object g are shown below. The
base properties are listed first, followed by the GPIB-specific properties.

3 Using Interface Objects

3-6

g = gpib('ni',0,1);
set(g)
 ByteOrder: [{littleEndian} | bigEndian]
 BytesAvailableFcn
 BytesAvailableFcnCount
 BytesAvailableFcnMode: [{eosCharCode} | byte]
 ErrorFcn
 InputBufferSize
 Name
 OutputBufferSize
 OutputEmptyFcn
 RecordDetail: [{compact} | verbose]
 RecordMode: [{overwrite} | append | index]
 RecordName
 Tag
 Timeout
 TimerFcn
 TimerPeriod
 UserData

 GPIB specific properties:
 BoardIndex
 CompareBits
 EOIMode: [{on} | off]
 EOSCharCode
 EOSMode: [{none} | read | write | read&write]
 PrimaryAddress
 SecondaryAddress

You can display one or more properties and their current values to a variable or to the
command line.

For example, all the properties and their current values for the GPIB object g are shown
below. The base properties are listed first, followed by the GPIB-specific properties.

get(g)
 ByteOrder = littleEndian
 BytesAvailable = 0
 BytesAvailableFcn =
 BytesAvailableFcnCount = 48
 BytesAvailableFcnMode = eosCharCode
 BytesToOutput = 0
 ErrorFcn =
 InputBufferSize = 512

 Configuring and Returning Properties

3-7

 Name = GPIB0-1
 OutputBufferSize = 512
 OutputEmptyFcn =
 RecordDetail = compact
 RecordMode = overwrite
 RecordName = record.txt
 RecordStatus = off
 Status = closed
 Tag =
 Timeout = 10
 TimerFcn =
 TimerPeriod = 1
 TransferStatus = idle
 Type = gpib
 UserData = []
 ValuesReceived = 0
 ValuesSent = 0

 GPIB specific properties:
 BoardIndex = 0
 BusManagementStatus = [1x1 struct]
 CompareBits = 8
 EOIMode = on
 EOSCharCode = LF
 EOSMode = none
 HandshakeStatus = [1x1 struct]
 PrimaryAddress = 1
 SecondaryAddress = 0

To display the current value for one property, you supply the property name to get.

g.OutputBufferSize
ans =
 512

To display the current values for multiple properties, you include the property names as
elements of a cell array.

g.BoardIndex
ans =
 [0]

g.TransferStatus
ans =
 'idle'

3 Using Interface Objects

3-8

You can also use the dot notation to display a single property value.

g.PrimaryAddress
ans =
 1

Configuring Property Values

You can configure property values using the object

g.EOSMode = 'read'

To configure values for multiple properties, you can set each one as follows.

g.EOSCharCode = 'CR'
g.Name = 'Test1-gpib'

Note that you can configure only one property value at a time using the dot notation.

In practice, you can configure many of the properties at any time while the instrument
object exists — including during object creation. However, some properties are not
configurable while the object is connected to the instrument or when recording
information to disk. Use the propinfo function, or refer to the properties documentation
to understand when you can configure a property.

Specifying Property Names

Instrument object property names are presented using mixed case. While this makes
property names easier to read, you can use any case you want when specifying property
names. Additionally, you need use only enough letters to identify the property name
uniquely, so you can abbreviate most property names. For example, you can configure the
EOSMode property in any of these ways.

g.EOSMode = 'read'
g.eosmode = 'read'
g.EOSM = 'read'

However, when you include property names in a file, you should use the full property
name. This practice can prevent problems with future releases of the Instrument Control
Toolbox software if a shortened name is no longer unique because of the addition of new
properties.

 Configuring and Returning Properties

3-9

Default Property Values

If you do not explicitly define a value for a property, then the default value is used. All
configurable properties have default values.

Note Default values are provided for all instrument object properties. For serial port
objects, the default values are provided by your operating system. For GPIB and VISA
instrument objects, the default values are provided by vendor-supplied tools. However,
these settings are overridden by your MATLAB code, and will have no effect on your
instrument control application.

If a property has a finite set of character vector values, then the default value is enclosed
by {} (curly braces). For example, the default value for the EOSMode property is none.

g.EOSMode
ans =

none

You can also use the propinfo function, or refer to the functions documentation to find
the default value for any property.

Using Tab Completion for Functions

To get a list of options you can use on the function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For example, when you create a gpib object, you can get a list of
installed vendors:

g = gpib('

When you press Tab after the parentheses and single quote, as shown here, the list of
installed GPIB vendors displays, such as keysight, ics, mcc, and ni.

The format for the GPIB object constructor function is:

g = gpib('vendor',boardindex,primaryaddress)

3 Using Interface Objects

3-10

When you press Tab where a field should appear, you get the list of options for that field.
The other interface objects, such as Bluetooth, Serial, TCP/IP, etc., also include this
capability on their object constructor functions.

You can also get the values for property-value pairs. For example, to get the possible
terminator values when creating a serial object, type:

s = serial('COM1','Terminator','

Press Tab after typing the single quote after Terminator to get the possible values for
that property, as shown here.

Many of the other toolbox functions also have tab completion. For example, when using
the fread function you can specify the precision type using tab completion.

data = fread(s,256,'

Press Tab after typing the single quote after the size (256 values in this example), since
precision is the next argument the fread function takes, to get the possible values for
the precision types, such as 'double', 'int16', etc.

 Configuring and Returning Properties

3-11

When the list of possible values is long, a scroll bar appears in the pop-up window, as
shown in this example.

Property Inspector

The Property Inspector enables you to inspect and set properties for one or more
instrument objects. It provides a list of all properties and displays their current values.

Settable properties in the list are associated with an editing device that is appropriate for
the values accepted by the particular property. For example, a callback configuration
GUI to set ErrorFcn, a pop-up menu to set RecordMode, and a text field to specify the
TimerPeriod. The values for read-only properties are grayed out.

3 Using Interface Objects

3-12

You open the Property Inspector with the inspect function. Alternatively, you can open
the Property Inspector via the Workspace browser by right-clicking an instrument object
and selecting Call Property Inspector from the context menu, or by double-clicking the
object.

 Configuring and Returning Properties

3-13

Writing and Reading Data

In this section...
“Before Performing Read/Write Operations” on page 3-14
“Writing Data” on page 3-15
“Reading Data” on page 3-19

Before Performing Read/Write Operations

Communicating with your instrument involves writing and reading data. For example,
you might write a text command to a function generator that queries its peak-to-peak
voltage, and then read back the voltage value as a double-precision array.

Before performing a write or read operation, you should consider these three questions:

• What is the process by which data flows from the MATLAB workspace to the
instrument, and from the instrument to the MATLAB workspace?

The Instrument Control Toolbox automatically manages the data transferred between
the MATLAB workspace and the instrument. For many common applications, you can
ignore the buffering and data flow process. However, if you are transferring a large
number of values, executing an asynchronous read or write operation, or debugging
your application, you might need to be aware of how this process works.

• Is the data to be transferred binary (numerical) or text (ASCII)?

For many instruments, writing text data means writing string commands that change
instrument settings, prepare the instrument to return data or status information, and
so on. Writing binary data means writing numerical values to the instrument such as
calibration or waveform data.

• Will the write or read function block access to the MATLAB Command Window?

You control access to the MATLAB Command Window by specifying whether a read
or write operation is synchronous or asynchronous. A synchronous operation blocks
access to the command line until the read or write function completes execution. An
asynchronous operation does not block access to the command line, and you can issue
additional commands while the read or write function executes in the background.

3 Using Interface Objects

3-14

There are other issues to consider when you read and write data, like the conditions
under which a read or write operation completes. These issues vary depending upon the
supported interface and are described in the respective interface-specific chapters.

Writing Data
Functions Associated with Writing Data

Function Name Description
binblockwrite Write binblock data to the instrument.
fprintf Write text to the instrument.
fwrite Write binary data to the instrument.
stopasync Stop asynchronous read and write operations.
Properties Associated with Writing Data

Property Name Description
BytesToOutput Indicate the number of bytes currently in the output buffer.
OutputBufferSize Specify the size of the output buffer in bytes.
Timeout Specify the waiting time to complete a read or write operation.
TransferStatus Indicate if an asynchronous read or write operation is in

progress.
ValuesSent Indicate the total number of values written to the instrument.

Output Buffer and Data Flow

The output buffer is computer memory allocated by the instrument object to store data
that is to be written to the instrument. The flow of data from the MATLAB workspace to
your instrument follows these steps:

1 The data specified by the write function is sent to the output buffer.
2 The data in the output buffer is sent to the instrument.

The OutputBufferSize property specifies the maximum number of bytes that you can
store in the output buffer. The BytesToOutput property indicates the number of bytes
currently in the output buffer. The default values for these properties are:

g = gpib('ni',0,1);
g.OutputBufferSize

 Writing and Reading Data

3-15

ans =

 512
g.BytesToOutput

ans =

 0

If you attempt to write more data than can fit in the output buffer, an error is returned
and no data is written.

Note When writing data, you might need to specify a value, which can consist of one or
more bytes. This is because some write functions allow you to control the number of bits
written for each value and the interpretation of those bits as character, integer or
floating-point values. For example, if you write one value from an instrument using the
int32 format, then that value consists of four bytes.

For example, suppose you write the string command *IDN? to an instrument using the
fprintf function. As shown below, the string is first written to the output buffer as six
values.

The *IDN? command consists of six values because the End-Of-String character is
written to the instrument, as specified by the EOSMode and EOSCharCode properties.
Moreover, the default data format for the fprintf function specifies that one value
corresponds to one byte.

3 Using Interface Objects

3-16

As shown below, after the string is stored in the output buffer, it is then written to the
instrument.

Writing Text Data Versus Writing Binary Data

For many instruments, writing text data means writing string commands that change
instrument settings, prepare the instrument to return data or status information, and so
on. Writing binary data means writing numerical values to the instrument such as
calibration or waveform data.

You can write text data with the fprintf function. By default, fprintf uses the %s\n
format, which formats the data as a string and includes the terminator. You can write
binary data with the fwrite function. By default, fwrite writes data using the uchar
precision, which translates the data as unsigned 8-bit characters. Both of these functions
support many other formats and precisions, as described in their reference pages.

The following example illustrates writing text data and binary data to a Tektronix TDS
210 oscilloscope. The text data consists of string commands, while the binary data is a
waveform that is to be downloaded to the scope and stored in its memory:

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1. The size of the output buffer is increased to accommodate the
waveform data. You must configure the OutputBufferSize property while the
GPIB object is disconnected from the instrument.
g = gpib('ni',0,1);
g.OutputBufferSize = 3000;

2 Connect to the instrument — Connect g to the instrument.

fopen(g)

 Writing and Reading Data

3-17

3 Write and read data — Write string commands that configure the scope to store
binary waveform data in memory location A.
fprintf(g,'DATA:DESTINATION REFA');
fprintf(g,'DATA:ENCDG SRPbinary');
fprintf(g,'DATA:WIDTH 1');
fprintf(g,'DATA:START 1');

Create the waveform data.
t = linspace(0,25,2500);
data = round(sin(t)*90 + 127);

Write the binary waveform data to the scope.
cmd = double('CURVE #42500');
fwrite(g,[cmd data]);

The ValuesSent property indicates the total number of values that were written to
the instrument.
g.ValuesSent
ans =
 2577

4 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, remove it from memory, and remove it from the MATLAB
workspace.
fclose(g)
delete(g)
clear g

Synchronous Versus Asynchronous Write Operations

By default, all write functions operate synchronously and block the MATLAB Command
Window until the operation completes. To perform an asynchronous write operation, you
supply the async input argument to the fprintf or fwrite function.

For example, you use the following syntax to modify the fprintf commands used in the
preceding example to write text data asynchronously.
fprintf(g,'DATA:DESTINATION REFA','async');

Similarly, you use the following syntax to modify the fwrite command used in the
preceding example to write binary data asynchronously.

3 Using Interface Objects

3-18

fwrite(g,[cmd data],'async');

You can monitor the status of the asynchronous write operation with the
TransferStatus property. A value of idle indicates that no asynchronous operations
are in progress.

g.TransferStatus
ans =
write

You can use the BytesToOutput property to indicate the numbers of bytes that exist in
the output buffer waiting to be written to the instrument.

g.BytesToOutput
ans =
 2512

Reading Data
Functions Associated with Reading Data

Function Name Description
binblockread Read binblock data from the instrument.
fgetl Read one line of text from the instrument and discard the

terminator.
fgets Read one line of text from the instrument and include the

terminator.
fread Read binary data from the instrument.
fscanf Read data from the instrument, and format as text.
readasync Read data asynchronously from the instrument.
scanstr Read data from the instrument, format as text, and parse
stopasync Stop asynchronous read and write operations.

 Writing and Reading Data

3-19

Properties Associated with Reading Data

Property Name Description
BytesAvailable Indicate the number of bytes available in the input buffer.
InputBufferSize Specify the size of the input buffer in bytes.
ReadAsyncMode Specify whether an asynchronous read is continuous or

manual (serial port, TCPIP, UDP, and VISA-serial objects
only).

Timeout Specify the waiting time to complete a read or write
operation.

TransferStatus Indicate if an asynchronous read or write operation is in
progress.

ValuesReceived Indicate the total number of values read from the
instrument.

Input Buffer and Data Flow

The input buffer is computer memory allocated by the instrument object to store data
that is to be read from the instrument. The flow of data from your instrument to the
MATLAB workspace follows these steps:

1 The data read from the instrument is stored in the input buffer.
2 The data in the input buffer is returned to the MATLAB variable specified by a read

function.

The InputBufferSize property specifies the maximum number of bytes that you can
store in the input buffer. The BytesAvailable property indicates the number of bytes
currently available to be read from the input buffer. The default values for these
properties are:

g = gpib('ni',0,1);
g.InputBufferSize

ans =

 512
g.BytesAvailable

ans =

3 Using Interface Objects

3-20

 0

If you attempt to read more data than can fit in the input buffer, an error is returned and
no data is read.

For example, suppose you use the fscanf function to read the text-based response of the
*IDN? command previously written to the instrument. The data is first read into the
input buffer.

Note that for a given read operation, you might not know the number of bytes returned
by the instrument. Therefore, you might need to preset the InputBufferSize property
to a sufficiently large value before connecting the instrument object.

As shown below, after the data is stored in the input buffer, it is then transferred to the
output variable specified by fscanf.

 Writing and Reading Data

3-21

Reading Text Data Versus Reading Binary Data

For many instruments, reading text data means reading string data that reflect
instrument settings, status information, and so on. Reading binary data means reading
numerical values from the instrument.

You can read text data with the fgetl, fgets, and fscanf functions. By default, these
functions return data using the %c format. You can read binary data with the fread
function. By default, fread returns numerical values as double-precision arrays. Both
the fscanf and fread functions support many other formats and precisions, as
described in their reference pages.

The following example illustrates reading text data and binary data from a Tektronix
TDS 210 oscilloscope, which is displaying a periodic input signal with a nominal
frequency of 1.0 kHz.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib('ni',0,1);
2 Connect to the instrument — Connect g to the instrument.

fopen(g)
3 Write and read data — Write the *IDN? command to the scope, and read back the

identification information as text.

fprintf(g,'*IDN?')
idn = fscanf(g)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Configure the scope to return the period of the input signal, and then read the period
as a binary value. The output display format is configured to use short exponential
notation for doubles.

fprintf(g,'MEASUREMENT:MEAS1:TYPE PERIOD')
fprintf(g,'MEASUREMENT:MEAS1:VALUE?')
format short e
period = fread(g,9)'
period =
 49 46 48 48 54 69 45 51 10

3 Using Interface Objects

3-22

period consists of positive integers representing character codes, where 10 is a line
feed. To convert the period value to a string, use the char function.

char(period)
ans =
1.006E-3

The ValuesReceived property indicates the total number of values that were read
from the instrument.

g.ValuesReceived
ans =
 65

4 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, remove it from memory, and remove it from the MATLAB
workspace.

fclose(g)
delete(g)
clear g

Synchronous Versus Asynchronous Read Operations

The fgetl, fgets, fscanf, and fread functions operate synchronously and block the
MATLAB Command Window until the operation completes. To perform an asynchronous
read operation, you use the readasync function. readasync asynchronously reads data
from the instrument and stores it in the input buffer. To transfer the data from the input
buffer to a MATLAB variable, you use one of the synchronous read functions.

Note For serial port, TCPIP, UDP, and VISA-serial objects, you can also perform an
asynchronous read operation by configuring the ReadAsyncMode property to
continuous.

For example, to modify the preceding example to asynchronously read the scope's
identification information, you would issue the readasync function after the *IDN?
command is written.

fprintf(g,'*IDN?')
readasync(g)

 Writing and Reading Data

3-23

You can monitor the status of the asynchronous read operation with the
TransferStatus property. A value of idle indicates that no asynchronous operations
are in progress.

g.TransferStatus
ans =
read

You can use the BytesAvailable property to indicate the number of bytes that exist in
the input buffer waiting to be transferred to the MATLAB workspace.

g.BytesAvailable
ans =
 56

When the read completes, you can transfer the data as text to a MATLAB variable using
the fscanf function.

idn = fscanf(g);

3 Using Interface Objects

3-24

Using SCPI Commands
Standard Commands for Programmable Instruments or SCPI commands are ASCII
based set of pre-defined commands and responses. They use the same data format across
all SCPI compliant instruments. You can use SCPI commands with the Instrument
Control Toolbox and the MATLAB programming environment to control multiple
instruments using similar functions. You can access a common functionality in
instruments without changing your programming environment. SCPI commands are
simple and flexible and accept a range of parameter formats. This allows you to easily
program your instrument. The response to SCPI commands can be status information or
data. You can define the format of the data independent of the device or the
measurement. For more information refer to the IVI Foundation SCPI Specifications.
Commonly Used SCPI Commands

Commands Functionality
*CLS Clear the status
*ESE Enable standard event
*ESE? Query if event is enabled and standard
*ESR? Query standard event status register
*IDN? Query instrument identification
*OPC Operation complete
*OPC? Query if operation is complete
*RST Instrument reset
*SRE Enable service request
*SRE? Query id service request is enabled
*STB? Query read of status byte
*TST? Query instrument self test
*WAI Wait to continue

 Using SCPI Commands

3-25

http://www.ivifoundation.org/docs/SCPI-99.PDF

Disconnecting and Cleaning Up

In this section...
“Disconnecting an Instrument Object” on page 3-26
“Cleaning Up the MATLAB Workspace” on page 3-26

Disconnecting an Instrument Object

When you no longer need an instrument object, you should disconnect it from the
instrument, and clean up the MATLAB workspace by removing the object from memory
and from the workspace.

To disconnect your communication with the instrument, use the fclose function.

fclose(g)

You can examine the Status property to verify that the object and the instrument are
disconnected.

g.Status
ans =
closed

After fclose is issued, the resources associated with g are made available, and you can
once again connect an instrument object to the instrument with fopen.

Cleaning Up the MATLAB Workspace

To remove the instrument object from memory, use the delete function.

delete(g)

A deleted instrument object is invalid, which means that you cannot connect it to the
instrument. In this case, you should remove the object from the MATLAB workspace. To
remove instrument objects and other variables from the MATLAB workspace, use the
clear command.

clear g

3 Using Interface Objects

3-26

If you use clear on an object that is connected to an instrument, the object is removed
from the workspace but remains connected to the instrument. You can restore cleared
instrument objects to the MATLAB workspace with the instrfind function.

 Disconnecting and Cleaning Up

3-27

Controlling Instruments Using GPIB

This chapter describes specific issues related to controlling instruments that use the
GPIB interface.

• “GPIB Overview” on page 4-2
• “Creating a GPIB Object” on page 4-13
• “Configuring the GPIB Address” on page 4-16
• “Writing and Reading Data” on page 4-18
• “Events and Callbacks” on page 4-29
• “Triggers” on page 4-36
• “Serial Polls” on page 4-39

4

GPIB Overview
In this section...
“What Is GPIB?” on page 4-2
“Important GPIB Features” on page 4-3
“GPIB Lines” on page 4-4
“Status and Event Reporting” on page 4-8

What Is GPIB?
GPIB is a standardized interface that allows you to connect and control multiple devices
from various vendors. GPIB is also referred to by its original name HP-IB, or by its IEEE
designation IEEE-488. The GPIB functionality has evolved over time, and is described in
several specifications:

• The IEEE 488.1-1975 specification defines the electrical and mechanical
characteristics of the interface and its basic functional characteristics.

• The IEEE-488.2-1987 specification builds on the IEEE 488.1 specification to define an
acceptable minimum configuration and a basic set of instrument commands and
common data formats.

• The Standard Commands for Programmable Instrumentation (SCPI) specification
builds on the commands given by the IEEE 488.2 specification to define a standard
instrument command set that can be used by GPIB or other interfaces.

For many GPIB applications, you can communicate with your instrument without
detailed knowledge of how GPIB works. Communication is established through a GPIB
object, which you create in the MATLAB workspace.

If your application is straightforward, or if you are already familiar with the topics
mentioned above, you might want to begin with “Creating a GPIB Object” on page 4-13.
If you want a high-level description of all the steps you are likely to take when
communicating with your instrument, refer to “Creating Instrument Objects” on page 2-
2.

Some of the GPIB functionality is required for all GPIB devices, while other GPIB
functionality is optional. Additionally, many devices support only a subset of the SCPI
command set, or use a different vendor-specific command set. Refer to your device
documentation for a complete list of its GPIB capabilities and its command set.

4 Controlling Instruments Using GPIB

4-2

Important GPIB Features
The important GPIB features are described below. For detailed information about GPIB
functionality, see the appropriate references in the Appendix B.

Bus and Connector

The GPIB bus is a cable with two 24-pin connectors that allow you to connect multiple
devices to each other. The bus and connector have these features and limitations:

• You can connect up to 15 devices to a bus.
• You can connect devices in a star configuration, a linear configuration, or a

combination of configurations.
• To achieve maximum data transfer rates, the cable length should not exceed 20

meters total or an average of 2 meters per device. You can eliminate these restrictions
by using a bus extender.

GPIB Devices

Each GPIB device must be some combination of a Talker, a Listener, or a Controller. A
Controller is typically a board that you install in your computer. Talkers and Listeners
are typically instruments such as oscilloscopes, function generators, multimeters, and so
on. Most modern instruments are both Talkers and Listeners.

• Talkers — A Talker transmits data over the interface when addressed to talk by the
Controller. There can be only one Talker at a time.

• Listeners — A Listener receives data over the interface when addressed to listen by
the Controller. There can be up to 14 Listeners at a given time. Typically, the
Controller is a Talker while one or more instruments on the GPIB are Listeners.

• Controllers — The Controller specifies which devices are Talkers or Listeners. A
GPIB system can contain multiple Controllers. One of them is designated the System
Controller. However, only one Controller can be active at a given time. The current
active controller is the Controller-In-Charge (CIC). The CIC can pass control to an
idle Controller, but only the System Controller can make itself the CIC.

When the Controller is not sending messages, then a Talker can send messages.
Typically, the CIC is a Listener while another device is enabled as a Talker.

Each Controller is identified by a unique board index number. Each Talker/Listener is
identified by a unique primary address ranging from 0 to 30, and by an optional
secondary address, which can be 0 or can range from 96 to 126.

 GPIB Overview

4-3

GPIB Data

There are two types of data that can be transferred over GPIB: instrument data and
interface messages:

• Instrument data — Instrument data consists of vendor-specific commands that
configure your instrument, return measurement results, and so on. For a complete list
of commands supported by your instrument, refer to its documentation.

• Interface messages — Interface messages are defined by the GPIB standard and
consist of commands that clear the GPIB bus, address devices, return self-test results,
and so on.

Data transfer consists of one byte (8 bits) sent in parallel. The data transfer rate across
the interface is limited to 1 megabyte per second. However, this data rate is usually not
achieved in practice, and is limited by the slowest device on the bus.

GPIB Lines

GPIB consists of 24 lines, which are shared by all instruments connected to the bus. 16
lines are used for signals, while eight lines are for ground. The signal lines are divided
into these groups:

• Eight data lines
• Five interface management lines
• Three handshake lines

The signal lines use a low-true (negative) logic convention with TTL levels. This means
that a line is low (true or asserted) when it is a TTL low level, and a line is high (false or
unasserted) when it is a TTL high level. The pin assignment scheme for a GPIB
connector is shown below.

4 Controlling Instruments Using GPIB

4-4

GPIB Pin and Signal Assignments

Pin Label Signal Name Pin Label Signal Name
1 DIO1 Data transfer 13 DIO5 Data transfer
2 DIO2 Data transfer 14 DIO6 Data transfer
3 DIO3 Data transfer 15 DIO7 Data transfer
4 DIO4 Data transfer 16 DIO8 Data transfer
5 EOI End Or Identify 17 REN Remote Enable
6 DAV Data Valid 18 GND DAV ground
7 NRFD Not Ready For Data 19 GND NRFD ground
8 NDAC Not Data Accepted 20 GND NDAC ground
9 IFC Interface Clear 21 GND IFC ground
10 SRQ Service Request 22 GND SRQ ground
11 ATN Attention 23 GND ATN ground
12 Shield Chassis ground 24 GND Signal ground

Data Lines

The eight data lines, DIO1 through DIO8, are used for transferring data one byte at a
time. DIO1 is the least significant bit, while DIO8 is the most significant bit. The
transferred data can be an instrument command or a GPIB interface command.

Data formats are vendor-specific and can be text-based (ASCII) or binary. GPIB interface
commands are defined by the IEEE 488 standard.

Interface Management Lines

The interface management lines control the flow of data across the GPIB interface.

 GPIB Overview

4-5

GPIB Interface Management Lines

Line Description
ATN Used by the Controller to inform all devices on the GPIB that bytes are

being sent. If the ATN line is high, the bytes are interpreted as an
instrument command. If the ATN line is low, the bytes are interpreted as
an interface message.

IFC Used by the Controller to initialize the bus. If the IFC line is low, the
Talker and Listeners are unaddressed, and the System Controller becomes
the Controller-In-Charge.

REN Used by the Controller to place instruments in remote or local program
mode. If REN is low, all Listeners are placed in remote mode, and you
cannot change their settings from the front panel. If REN is high, all
Listeners are placed in local mode.

SRQ Used by Talkers to asynchronously request service from the Controller. If
SRQ is low, then one or more Talkers require service (for example, an error
such as invalid command was received). You issue a serial poll to determine
which Talker requested service. The poll automatically sets the SRQ line
high.

EOI If the ATN line is high, the EOI line is used by Talkers to identify the end
of a byte stream such as an instrument command. If the ATN line is low,
the EOI line is used by the Controller to perform a parallel poll (not
supported by the toolbox).

You can examine the state of the interface management lines with the
BusManagementStatus property.

Handshake Lines

The three handshake lines, DAV, NRFD, and NDAC, are used to transfer bytes over the
data lines from the Talker to one or more addressed Listeners.

Before data is transferred, all three lines must be in the proper state. The active Talker
controls the DAV line and the Listener(s) control the NRFD and NDAC lines. The
handshake process allows for error-free data transmission.

4 Controlling Instruments Using GPIB

4-6

Handshake Lines

Line Description
DAV Used by the Talker to indicate that a byte can be read by the Listeners.
NRFD Indicates whether the Listener is ready to receive the byte.
NDAC Indicates whether the Listener has accepted the byte.

The handshaking process follows these steps:

1 Initially, the Talker holds the DAV line high indicating no data is available, while
the Listeners hold the NRFD line high and the NDAC line low indicating they are
ready for data and no data is accepted, respectively.

2 When the Talker puts data on the bus, it sets the DAV line low, which indicates that
the data is valid.

3 The Listeners set the NRFD line low, which indicates that they are not ready to
accept new data.

4 The Listeners set the NDAC line high, which indicates that the data is accepted.
5 When all Listeners indicate that they have accepted the data, the Talker sets the

DAV line high indicating that the data is no longer valid. The next byte of data can
now be transmitted.

6 The Listeners hold the NRFD line high indicating they are ready to receive data
again, and the NDAC line is held low indicating no data is accepted.

Note If the ATN line is high during the handshaking process, the information is
considered data such as an instrument command. If the ATN line is low, the information
is considered a GPIB interface message.

The handshaking steps are shown below.

 GPIB Overview

4-7

You can examine the state of the handshake lines with the HandshakeStatus property.

Status and Event Reporting

GPIB provides a system for reporting status and event information. With this system,
you can find out if your instrument has data to return, whether a command error
occurred, and so on. For many instruments, the reporting system consists of four 8-bit
registers and two queues (output and event). The four registers are grouped into these
two functional categories:

• Status Registers — The Status Byte Register (SBR) and Standard Event Status
Register (SESR) contain information about the state of the instrument.

• Enable Registers — The Event Status Enable Register (ESER) and the Service
Request Enable Register (SRER) determine which types of events are reported to the
status registers and the event queue. ESER enables SESR, while SRER enables SBR.

The status registers, enable registers, and output queue are shown below.

4 Controlling Instruments Using GPIB

4-8

Status Byte Register

Each bit in the Status Byte Register (SBR) is associated with a specific type of event.
When an event occurs, the instrument sets the appropriate bit to 1. You can enable or
disable the SBR bits with the Service Request Enable Register (SRER). You can
determine which events occurred by reading the enabled SBR bits.

 GPIB Overview

4-9

Status Byte Register Bits

Bit Label Description
0-3 – Instrument-specific summary messages.
4 MAV The Message Available bit indicates if data is available in the

Output Queue. MAV is 1 if the Output Queue contains data. MAV
is 0 if the Output Queue is empty.

5 ESB The Event Status bit indicates if one or more enabled events have
occurred. ESB is 1 if an enabled event occurs. ESB is 0 if no
enabled events occur. You enable events with the Standard Event
Status Enable Register.

6 MSS The Master Summary Status summarizes the ESB and MAV bits.
MSS is 1 if either MAV or ESB is 1. MSS is 0 if both MAV and ESB
are 0. This bit is obtained from the *STB? command.

RQS The Request Service bit indicates that the instrument requests
service from the GPIB controller. This bit is obtained from a serial
poll.

7 – Instrument-specific summary message.

For example, if you want to know when a specific type of instrument error occurs, you
would enable bit 5 of the SRER. Additionally, you would enable the appropriate bit of the
Standard Event Status Enable Register (see “Standard Event Status Register” on page 4-
10) so that the error event of interest is reported by the ESB bit of the SBR.

Standard Event Status Register

Each bit in the Standard Event Status Register (SESR) is associated with a specific state
of the instrument. When the state changes, the instrument sets the appropriate bits to 1.
You can enable or disable the SESR bits with the Standard Event Status Enable Register
(ESER). You can determine the state of the instrument by reading the enabled SESR
bits. The SESR bits are described below.

4 Controlling Instruments Using GPIB

4-10

SESR Bits

Bit Label Description
0 OPC The Operation Complete bit indicates that all commands have

completed.
1 RQC The Request Control bit is not used by most instruments.
2 QYE The Query Error bit indicates that the instrument attempted to

read an empty output buffer, or that data in the output buffer was
lost.

3 DDE The Device Dependent Error bit indicates that a device error
occurred (such as a self-test error).

4 EXE The Execution Error bit indicates that an error occurred when the
device was executing a command or query.

5 CME The Command Error bit indicates that a command syntax error
occurred.

6 URQ The User Request bit is not used by most instruments.
7 PON The Power On bit indicates that the device is powered on.

For example, if you want to know when an execution error occurs, you would enable bit 4
of the ESER. Additionally, you would enable bit 5 of the SRER (see “Status Byte
Register” on page 4-9) so that the error event of interest is reported by the ESB bit of the
SBR.

Reading and Writing Register Information

This section describes the common GPIB commands used to read and write status and
event register information.

 GPIB Overview

4-11

Register Commands

Register Operation Command Description
SESR Read *ESR? Return a decimal value that corresponds to the

weighted sum of all the bits set in the SESR
register.

Write N/A You cannot write to the SESR register.
ESER Read *ESE? Return a decimal value that corresponds to the

weighted sum of all the bits enabled by the *ESE
command.

Write *ESE Write a decimal value that corresponds to the
weighted sum of all the bits you want to enable in
the SESR register.

SBR Read *STB? Return a decimal value that corresponds to the
weighted sum of all the bits set in the SBR register.
This command returns the same result as a serial
poll except that the MSS bit is not cleared.

Write N/A You cannot write to the SBR register.
SRER Read *SRE? Return a decimal value that corresponds to the

weighted sum of all the bits enabled by the *SRE
command.

Write *SRE Write a decimal value that corresponds to the
weighted sum of all the bits you want to enable in
the SBR register.

For example, to enable bit 4 of the SESR, you write the command *ESE 16. To enable bit
4 and bit 5 of the SESR, you write the command *ESE 48. To enable bit 5 of the SBR,
you write the command *SRE 32.

To see how to use many of these commands in the context of an instrument control
session, refer to “Executing a Serial Poll” on page 4-39.

4 Controlling Instruments Using GPIB

4-12

Creating a GPIB Object

In this section...
“Using the gpib Function” on page 4-13
“GPIB Object Display” on page 4-14

Using the gpib Function

You create a GPIB object with the gpib function. gpib requires the adaptor name, the
GPIB board index, and the primary address of the instrument. As described in
“Connecting to the Instrument” on page 2-4, you can also configure property values
during object creation. For a list of supported adaptors, refer to “Interface Driver
Adaptor” on page 1-9.

Each GPIB object is associated with one controller and one instrument. For example, to
create a GPIB object associated with a National Instruments controller with board index
0, and an instrument with primary address 1,

g = gpib('ni',0,1);

Note You do not use the GPIB board primary address in the GPIB object constructor
syntax. You use the board index and the instrument address.

The GPIB object g now exists in the IEEE workspace. You can display the class of g with
the whos command.

whos g
 Name Size Bytes Class

 g 1x1 636 gpib object

Grand total is 14 elements using 636 bytes

Once the GPIB object is created, the following properties are automatically assigned
values. These general-purpose properties describe the object based on its class type and
address information.

 Creating a GPIB Object

4-13

GPIB Descriptive Properties

Property Name Description
Name Specify a descriptive name for the GPIB object.
Type Indicate the object type.

You can display the values of these properties for g with the get function.
g.Name

ans =

GPIB0-1

g.Type

ans =

gpib

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

GPIB Object Display
The GPIB object provides you with a convenient display that summarizes important
address and state information. You can invoke the display summary as follows:

• Type the GPIB object at the command line.
• Exclude the semicolon when creating a GPIB object.
• Exclude the semicolon when configuring properties using dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the GPIB object g is:
GPIB Object Using NI Adaptor : GPIB0-1

4 Controlling Instruments Using GPIB

4-14

Communication Address
 BoardIndex: 0
 PrimaryAddress: 1
 SecondaryAddress: 0

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

See Also

Related Examples
• “Configuring the GPIB Address” on page 4-16
• “Writing and Reading Data” on page 4-18

 See Also

4-15

Configuring the GPIB Address
Each GPIB object is associated with one controller and one instrument. The GPIB
address consists of the board index of the GPIB controller, and the primary address and
(optionally) the secondary address of the instrument. The term “board index” is
equivalent to the term “logical unit” as used by Agilent Technologies®.

Note that some vendors place limits on the allowed board index values. Refer to
Appendix A for a list of these limitations. You can usually find the instrument addresses
through a front panel display or by examining dip switch settings. Valid primary
addresses range from 0 to 30. Valid secondary addresses range from 96 to 126, or can be
0, indicating that no secondary address is used.

The properties associated with the GPIB address are given below.
GPIB Address Properties

Property Name Description
BoardIndex Specify the index number of the GPIB board.
PrimaryAddress Specify the primary address of the GPIB instrument.
SecondaryAddress Specify the secondary address of the GPIB instrument.

You must specify the board index and instrument primary address values during GPIB
object creation. The BoardIndex and PrimaryAddress properties are automatically
updated with these values. If the instrument has a secondary address, you can specify its
value during or after object creation by configuring the SecondaryAddress property.

You can display the address property values for the GPIB object g created in “Creating a
GPIB Object” on page 4-13 .

g.BoardIndex

ans =

 0

g.PrimaryAddress

ans =

 1

4 Controlling Instruments Using GPIB

4-16

g.SecondaryAddress

ans =

 0

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also

Related Examples
• “Creating a GPIB Object” on page 4-13
• “Writing and Reading Data” on page 4-18

 See Also

4-17

Writing and Reading Data

In this section...
“Rules for Completing Write and Read Operations” on page 4-18
“Writing and Reading Text Data” on page 4-19
“Reading and Writing Binary Data” on page 4-22
“Parsing Input Data Using scanstr” on page 4-25
“Understanding EOI and EOS” on page 4-26

Rules for Completing Write and Read Operations

Completing Write Operations

A write operation using fprintf or fwrite completes when one of these conditions is
satisfied:

• The specified data is written.
• The time specified by the Timeout property passes.

Additionally, you can stop an asynchronous write operation at any time with the
stopasync function.

An instrument determines if a write operation is complete based on the EOSMode,
EOIMode, and EOSCharCode property values. If EOSMode is configured to either write
or read&write, each occurrence of \n in a text command is replaced with the End-Of-
String (EOS) character specified by the EOSCharCode value. Therefore, when you use
the default fprintf format of %s\n, all text commands written to the instrument will
end with that value. The default EOSCharCode value is LF, which corresponds to the line
feed character. The EOS character required by your instrument will be described in its
documentation.

If EOIMode is on, then the End Or Identify (EOI) line is asserted when the last byte is
written to the instrument. The last byte can be part of a binary data stream or a text
data stream. If EOSMode is configured to either write or read&write, then the last byte
written is the EOSCharCode value and the EOI line is asserted when the instrument
receives this byte.

4 Controlling Instruments Using GPIB

4-18

Completing Read Operations

A read operation with fgetl, fgets, fread, fscanf, or readasync completes when one
of these conditions is satisfied:

• The EOI line is asserted.
• The terminator specified by the EOSCharCode property is read. This can occur only

when the EOSMode property is configured to either read or read&write.
• The time specified by the Timeout property passes.
• The specified number of values is read (fread, fscanf, and readasync only).
• The input buffer is filled (if the number of values is not specified).

In addition to these rules, you can stop an asynchronous read operation at any time with
the stopasync function.

Writing and Reading Text Data

These functions are used when reading and writing text:
Function Purpose
fprintf Write text to an instrument.
fscanf Read data from an instrument and format as text.

These properties are associated with reading and writing text:
Property Purpose
ValuesReceived Specifies the total number of values read from the instrument.
ValuesSent Specifies the total number of values sent to the instrument.
InputBufferSize Specifies the total number of bytes that can be queued in the

input buffer at one time.
OutputBufferSize Specifies the total number of bytes that can be queued in the

output buffer at one time.
EOSMode Configures the End-Of-String termination mode.
EOSCharCode Specifies the End-Of-String terminator.
EOIMode Enables or disables the assertion of the EOI mode at the end of a

write operation.

 Writing and Reading Data

4-19

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

The following example illustrates how to communicate with a GPIB instrument by
writing and reading text data.

The instrument is a Tektronix TDS 210 two-channel oscilloscope. Therefore, many of the
commands used are specific to this instrument. A sine wave is input into channel 2 of the
oscilloscope, and your job is to measure the peak-to-peak voltage of the input signal:

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.
g = gpib('ni',0,1);

2 Connect to the instrument — Connect g to the oscilloscope, and return the
default values for the EOSMode and EOIMode properties.

fopen(g)
get(g,{'EOSMode','EOIMode'})
ans =
 'none' 'on'

Using these property values, write operations complete when the last byte is written
to the instrument, and read operations complete when the EOI line is asserted by
the instrument.

3 Write and read data — Write the *IDN? command to the instrument using
fprintf, and then read back the result of the command using fscanf.

fprintf(g,'*IDN?')
idn = fscanf(g)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Determine the measurement source. Possible measurement sources include channel
1 and channel 2 of the oscilloscope.
fprintf(g,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(g)
source =
CH1

4 Controlling Instruments Using GPIB

4-20

The scope is configured to return a measurement from channel 1. Because the input
signal is connected to channel 2, you must configure the instrument to return a
measurement from this channel.

fprintf(g,'MEASUREMENT:IMMED:SOURCE CH2')
fprintf(g,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(g)
source =
CH2

You can now configure the scope to return the peak-to-peak voltage, request the
value of this measurement, and then return the voltage value to the IEEE software
using fscanf.

fprintf(g,'MEASUREMENT:MEAS1:TYPE PK2PK')
fprintf(g,'MEASUREMENT:MEAS1:VALUE?')
ptop = fscanf(g)
ptop =
2.0199999809E0

4 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the IEEE workspace.

fclose(g)
delete(g)
clear g

ASCII Write Properties

By default, the End or Identify (EOI) line is asserted when the last byte is written to the
instrument. This behavior is controlled by the EOIMode property. When EOIMode is set
to on, the EOI line is asserted when the last byte is written to the instrument. When
EOIMode is set to off, the EOI line is not asserted when the last byte is written to the
instrument.

The EOI line can also be asserted when a terminator is written to the instrument. The
terminator is defined by the EOSCharCode property. When EOSMode is configured to
write or read&write, the EOI line is asserted when the EOSCharCode property value
is written to the instrument.

All occurrences of \n in the command written to the instrument are replaced with the
EOSCharCode property value if EOSMode is set to write or read&write.

 Writing and Reading Data

4-21

Reading and Writing Binary Data
These functions are used when reading and writing binary data:
Function Purpose
fread Read binary data from an instrument.
fwrite Write binary data to an instrument.

These properties are associated with reading and writing binary data:
Property Purpose
ValuesReceived Specifies the total number of values read from the instrument.
ValuesSent Specifies the total number of values sent to the instrument.
InputBufferSize Specifies the total number of bytes that can be queued in the

input buffer at one time.
OutputBufferSize Specifies the total number of bytes that can be queued in the

output buffer at one time.
EOSMode Configures the End-Of-String termination mode.
EOSCharCode Specifies the End-Of-String terminator.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

You use the fwrite function to write binary data to an instrument.

By default, the fwrite function operates in a synchronous mode. This means that
fwrite blocks the MATLAB command line until one of the following occurs:

• All the data is written
• A timeout occurs as specified by the Timeout property

By default the fwrite function writes binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fwrite.

You use the fread function to read binary data from the instrument.

4 Controlling Instruments Using GPIB

4-22

The fread function blocks the MATLAB command line until one of the following occurs:

• A timeout occurs as specified by the Timeout property
• The input buffer is filled
• The specified number of values is read
• The EOI line is asserted
• The terminator is received as specified by the EOSCharCode property (if defined)

By default the fread function reads binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fread.

Note When performing a read or write operation, you should think of the received data
in terms of values rather than bytes. A value consists of one or more bytes. For example,
one uint32 value consists of four bytes.

The following example illustrates how you can download the TDS 210 oscilloscope screen
display to the IEEE software. The screen display data is transferred to the IEEE
software and saved to disk using the Windows bitmap format. This data provides a
permanent record of your work, and is an easy way to document important signal and
scope parameters:

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib('ni',0,1);
2 Configure property values — Configure the input buffer to accept a reasonably

large number of bytes, and configure the timeout value to two minutes to account for
slow data transfer.

g.InputBufferSize = 50000;
g.Timeout = 120;

3 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)
4 Write and read data — Configure the scope to transfer the screen display as a

bitmap.

 Writing and Reading Data

4-23

fprintf(g,'HARDCOPY:PORT GPIB')
fprintf(g,'HARDCOPY:FORMAT BMP')
fprintf(g,'HARDCOPY START')

Asynchronously transfer the data from the instrument to the input buffer.
readasync(g)

Wait until the read operation completes, and then transfer the data to the IEEE
workspace as unsigned 8-bit integers.
g.TransferStatus
ans =
idle
out = fread(g,g.BytesAvailable,'uint8');

5 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the IEEE workspace.
fclose(g)
delete(g)
clear g

Viewing the Bitmap Data

To view the bitmap data, you should follow these steps:

1 Open a disk file.
2 Write the data to the disk file.
3 Close the disk file.
4 Read the data using the imread function.
5 Scale and display the data using the imagesc function.

Note that the MATLAB software file I/O versions of the fopen, fwrite, and fclose
functions are used.
fid = fopen('test1.bmp','w');
fwrite(fid,out,'uint8');
fclose(fid)
a = imread('test1.bmp','bmp');

Display the image.
imagesc(a)

Use a gray colormap since the instrument only generates grayscale images.

4 Controlling Instruments Using GPIB

4-24

c = colormap(gray);
colormap(flipud(c));

The resulting bitmap image is shown below.

Parsing Input Data Using scanstr
This example illustrates how to use the scanstr function to parse data that you read
from a Tektronix TDS 210 oscilloscope. scanstr is particularly useful when you want to
parse a string into one or more cell array elements, where each element is determined to
be either a double or a character vector:

 Writing and Reading Data

4-25

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib('ni',0,1);
2 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)
3 Write and read data — Return identification information to separate elements of a

cell array using the default delimiters.

fprintf(g,'*IDN?');
idn = scanstr(g)
idn =
 'TEKTRONIX'
 'TDS 210'
 [0]
 'CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04'

4 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(g)
delete(g)
clear g

Understanding EOI and EOS

This example illustrates how the EOI line and the EOS character are used to complete
read and write operations, and how the EOIMode, EOSMode, and EOSCharCode
properties are related to each other. In most cases, you can successfully communicate
with your instrument by accepting the default values for these properties.

The default value for EOIMode is on, which means that the EOI line is asserted when the
last byte is written to the instrument. The default value for EOSMode is none, which
means that the EOSCharCode value is not written to the instrument, and read
operations will not complete when the EOSCharCode value is read. Therefore, when you
use the default values for EOIMode and EOSMode,

• Write operations complete when the last byte is written to the instrument.
• Read operations complete when the EOI line is asserted by the instrument.

4 Controlling Instruments Using GPIB

4-26

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib('ni',0,1);
2 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)
3 Write and read data — Configure g so that the EOI line is not asserted after the

last byte is written to the instrument, and the EOS character is used to complete
write operations. The default format for fprintf is %s\n, where \n is replaced by
the EOS character as given by EOSCharCode.

g.EOIMode = 'off';
g.EOSMode = 'write';
fprintf(g,'*IDN?')
out = fscanf(g)
out =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Although EOSMode is configured so that read operations will not complete after
receiving the EOS character, the preceding read operation succeeded because the
EOI line was asserted.

Now configure g so that the EOS character is not used to complete read or write
operations. Because the EOI line is not asserted and the EOS character is not
written, the instrument cannot interpret the *IDN? command and a timeout occurs.

g.EOSMode = 'none';
fprintf(g,'*IDN?')
out = fscanf(g)

Warning: GPIB: NI: An I/O operation has been canceled mostly
likely due to a timeout.

Now configure g so that the read operation terminates after the “X” character is
read. The EOIMode property is configured to on so that the EOI line is asserted after
the last byte is written. The EOSMode property is configured to read so that the read
operation completes when the EOSCharCode value is read.

g.EOIMode = 'on';
g.EOSMode = 'read';

 Writing and Reading Data

4-27

g.EOSCharCode = 'X';
fprintf(g,'*IDN?')
out = fscanf(g)
out =

TEKTRONIX

Note that the rest of the identification string remains in the instrument's hardware
buffer. If you do not want to return this data during the next read operation, you
should clear it from the instrument buffer with the clrdevice function.

clrdevice(g)
4 Disconnect and clean up — When you no longer need g, you should disconnect it

from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(g)
delete(g)
clear g

4 Controlling Instruments Using GPIB

4-28

Events and Callbacks
In this section...
“Introduction to Events and Callbacks” on page 4-29
“Event Types and Callback Properties” on page 4-30
“Responding To Event Information” on page 4-31
“Creating and Executing Callback Functions” on page 4-32
“Enabling Callback Functions After They Error” on page 4-33
“Using Events and Callbacks to Read Binary Data” on page 4-34

Introduction to Events and Callbacks
You can enhance the power and flexibility of your instrument control application by
using events. An event occurs after a condition is met, and might result in one or more
callbacks.

While the instrument object is connected to the instrument, you can use events to display
a message, display data, analyze data, and so on. Callbacks are controlled through
callback properties and callback functions. All event types have an associated callback
property. Callback functions are MATLAB functions that you construct to suit your
specific application needs.

You execute a callback when a particular event occurs by specifying the name of the
callback function as the value for the associated callback property.

This example uses the callback function instrcallback to display a message to the
command line when a bytes-available event occurs. The event is generated when the
EOSCharCode property value is read.

g = gpib('ni',0,1);
g.BytesAvailableFcnMode = 'eosCharCode';
g.BytesAvailableFcn = @instrcallback;
fopen(g)
fprintf(g,'*IDN?')
readasync(g)

The resulting display from instrcallback is shown below.

BytesAvailable event occurred at 17:30:11 for the object: GPIB0-1.

 Events and Callbacks

4-29

End the GPIB session.

fclose(g)
delete(g)
clear g

You can see the code for the built-in instrcallback function by using the type
command.

Event Types and Callback Properties

The GPIB event types and associated callback properties are described below.
GPIB Event Types and Callback Properties

Event Type Associated Property Name
Bytes-available BytesAvailableFcn

BytesAvailableFcnCount
BytesAvailableFcnMode

Error ErrorFcn
Output-empty OutputEmptyFcn
Timer TimerFcn

TimerPeriod

Bytes-Available Event

A bytes-available event is generated immediately after a predetermined number of bytes
are available in the input buffer or the End-Of-String character is read, as determined by
the BytesAvailableFcnMode property.

If BytesAvailableFcnMode is byte, the bytes-available event executes the callback
function specified for the BytesAvailableFcn property every time the number of bytes
specified by BytesAvailableFcnCount is stored in the input buffer. If
BytesAvailableFcnMode is eosCharCode, then the callback function executes every
time the character specified by the EOSCharCode property is read.

This event can be generated only during an asynchronous read operation.

4 Controlling Instruments Using GPIB

4-30

Error Event

An error event is generated immediately after an error, such as a timeout, occurs. A
timeout occurs if a read or write operation does not successfully complete within the time
specified by the Timeout property. An error event is not generated for configuration
errors such as setting an invalid property value.

This event executes the callback function specified for the ErrorFcn property. It can be
generated only during an asynchronous read or write operation.

Output-Empty Event

An output-empty event is generated immediately after the output buffer is empty.

This event executes the callback function specified for the OutputEmptyFcn property. It
can be generated only during an asynchronous write operation.

Timer Event

A timer event is generated when the time specified by the TimerPeriod property passes.
Time is measured relative to when the object is connected to the instrument.

This event executes the callback function specified for the TimerFcn property. Note that
some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value is too small.

Responding To Event Information

You can respond to event information in a callback function or in a record file. Event
information stored in a callback function uses two fields: Type and Data. The Type field
contains the event type, while the Data field contains event-specific information. As
described in “Creating and Executing Callback Functions” on page 4-32, these two fields
are associated with a structure that you define in the callback function header. Refer to
“Debugging: Recording Information to Disk” on page 17-5 to learn about storing event
information in a record file.

The event types and the values for the Type and Data fields are given below.

 Events and Callbacks

4-31

GPIB Event Information

Event Type Field Field Value
Bytes available Type BytesAvailable

Data.AbsTime day-month-year hour:minute:second
Error Type Error

Data.AbsTime day-month-year hour:minute:second
Data.Message An error string

Output empty Type OutputEmpty
Data.AbsTime day-month-year hour:minute:second

Timer Type Timer
Data.AbsTime day-month-year hour:minute:second

The Data field values are described below.

AbsTime Field

AbsTime is defined for all events, and indicates the absolute time the event occurred.
The absolute time is returned using the MATLAB clock format:

day-month-year hour:minute:second

Message Field

Message is used by the error event to store the descriptive message that is generated
when an error occurs.

Creating and Executing Callback Functions

You specify the callback function to be executed when a specific event type occurs by
including the name of the file as the value for the associated callback property. You can
specify the callback function as a function handle or as a string cell array element. Note
that if you are executing a local callback function from within a file, then you must
specify the callback as a function handle.

For example, to execute the callback function mycallback every time the EOSCharCode
property value is read from your instrument,

4 Controlling Instruments Using GPIB

4-32

g.BytesAvailableFcnMode = 'eosCharCode';
g.BytesAvailableFcn = @mycallback;

Alternatively, you can specify the callback function as a cell array.

g.BytesAvailableFcn = {'mycallback'};

Callback functions require at least two input arguments. The first argument is the
instrument object. The second argument is a variable that captures the event
information given in the preceding table, GPIB Event Information. This event
information pertains only to the event that caused the callback function to execute. The
function header for mycallback is shown below.

function mycallback(obj,event)

You pass additional parameters to the callback function by including both the callback
function and the parameters as elements of a cell array. For example, to pass the
MATLAB variable time to mycallback,

time = datestr(now,0);
g.BytesAvailableFcnMode = 'eosCharCode';
g.BytesAvailableFcn = {@mycallback,time};

Alternatively, you can specify mycallback as a character vector in the cell array.

g.BytesAvailableFcn = {'mycallback',time};

The corresponding function header is

function mycallback(obj,event,time)

If you pass additional parameters to the callback function, then they must be included in
the function header after the two required arguments.

Note You can also specify the callback function as a character vector. In this case, the
callback is evaluated in the MATLAB workspace and no requirements are made on the
input arguments of the callback function.

Enabling Callback Functions After They Error

If an error occurs while a callback function is executing, then

 Events and Callbacks

4-33

• The callback function is automatically disabled.
• A warning is displayed at the command line, indicating that the callback function is

disabled.

If you want to enable the same callback function, you can set the callback property to the
same value or you can disconnect the object with the fclose function. If you want to use
a different callback function, the callback will be enabled when you configure the
callback property to the new value.

Using Events and Callbacks to Read Binary Data

This example extends “Reading and Writing Binary Data” on page 4-22 by using the
callback function instrcallback to display event-related information to the command
line when a bytes-available event occurs during a binary read operation:

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib('ni',0,1);
2 Configure properties — Configure the input buffer to accept a reasonably large

number of bytes, and configure the timeout value to two minutes to account for slow
data transfer.

g.InputBufferSize = 50000;
g.Timeout = 120;

Configure g to execute the callback function instrcallback every time 5000 bytes
is stored in the input buffer. Because instrcallback requires an instrument object
and event information to be passed as input arguments, the callback function is
specified as a function handle.

g.BytesAvailableFcnMode = 'byte';
g.BytesAvailableFcnCount = 5000;
g.BytesAvailableFcn = @instrcallback;

3 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)
4 Write and read data — Configure the scope to transfer the screen display as a

bitmap.

4 Controlling Instruments Using GPIB

4-34

fprintf(g,'HARDCOPY:PORT GPIB')
fprintf(g,'HARDCOPY:FORMAT BMP')
fprintf(g,'HARDCOPY START')

Initiate the asynchronous read operation, and begin generating events.

readasync(g)

instrcallback is called every time 5000 bytes is stored in the input buffer. The
resulting displays are shown below.

BytesAvailable event occurred at 09:41:42 for the object: GPIB0-1.
BytesAvailable event occurred at 09:41:50 for the object: GPIB0-1.
BytesAvailable event occurred at 09:41:58 for the object: GPIB0-1.
BytesAvailable event occurred at 09:42:06 for the object: GPIB0-1.
BytesAvailable event occurred at 09:42:14 for the object: GPIB0-1.
BytesAvailable event occurred at 09:42:22 for the object: GPIB0-1.
BytesAvailable event occurred at 09:42:30 for the object: GPIB0-1.

Wait until all the data is sent to the input buffer, and then transfer the data to the
MATLAB workspace as unsigned 8-bit integers.

g.TransferStatus
ans =
idle
out = fread(g,g.BytesAvailable,'uint8');

5 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(g)
delete(g)
clear g

 Events and Callbacks

4-35

Triggers
In this section...
“Using the trigger Function” on page 4-36
“Executing a Trigger” on page 4-36

Using the trigger Function

You can execute a trigger with the trigger function. This function is equivalent to
writing the GET (Group Execute Trigger) GPIB command to the instrument.

trigger instructs all the addressed Listeners to perform some instrument-specific
function such as taking a measurement. Refer to your instrument documentation to learn
how to use its triggering capabilities.

Executing a Trigger

This example illustrates GPIB triggering using an Agilent 33120A function generator.
The output of the function generator is displayed with an oscilloscope so that you can
observe the trigger.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib('ni',0,1);
2 Connect to the instrument — Connect g to the function generator.

fopen(g)
3 Write and read data — Configure the function generator to produce a 5000 Hz sine

wave, with 6 volts peak-to-peak.

fprintf(g,'Func:Shape Sin')
fprintf(g,'Volt 3')
fprintf(g,'Freq 5000')

Configure the burst of the trigger to display the sine wave for five seconds, configure
the function generator to expect the trigger from the GPIB board, and enable the
burst mode.

4 Controlling Instruments Using GPIB

4-36

fprintf(g,'BM:NCycles 25000')
fprintf(g,'Trigger:Source Bus')
fprintf(g,'BM:State On')

Trigger the instrument.

trigger(g)

Disable the burst mode.

fprintf(g,'BM:State Off')

While the function generator is triggered, the sine wave is saved to the Ref A
memory location of the oscilloscope. The saved waveform is shown below.

 Triggers

4-37

4 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(g)
delete(g)
clear g

4 Controlling Instruments Using GPIB

4-38

Serial Polls
In this section...
“Using the spoll Function” on page 4-39
“Executing a Serial Poll” on page 4-39

Using the spoll Function

You can execute a serial poll with the spoll function. In a serial poll, the Controller asks
(polls) each addressed Listener to send back a status byte that indicates whether it has
asserted the SRQ line and needs servicing. The seventh bit of this byte (the RQS bit) is
set if the instrument is requesting service.

The Controller performs the following steps for every addressed Listener:

1 The Listener is addressed to talk and the Serial Poll Enable (SPE) command byte is
sent.

2 The ATN line is set high and the Listener returns the status byte.
3 The ATN line is set low and the Serial Poll Disable (SPD) command byte is sent to

end the poll sequence.

Refer to “Status and Event Reporting” on page 4-8 for more information on the GPIB bus
lines and the RQS bit.

Executing a Serial Poll

This example shows you how to execute a serial poll for an Agilent 33120A function
generator and a Tektronix TDS 210 oscilloscope. In doing so, the example shows you how
to configure many of the status bits described in “Standard Event Status Register” on
page 4-10:

1 Create instrument objects — Create a GPIB object associated with an Agilent
33120A function generator at primary address 1.

g1 = gpib('ni',0,1);

Create a GPIB object associated with a Tektronix TDS 210 oscilloscope at primary
address 2.

 Serial Polls

4-39

g2 = gpib('ni',0,2);
2 Connect to the instrument — Connect g1 to the function generator and connect

g2 to the oscilloscope.

fopen([g1 g2])
3 Configure property values — Configure both objects to time out after 1 second.

g1.Timeout = 1;
g2.Timeout = 1;

4 Write and read data — Configure the function generator to request service when a
command error occurs.

fprintf(g1,'*CLS');
fprintf(g1,'*ESE 32');
fprintf(g1,'*SRE 32');

Configure the oscilloscope to request service when a command error occurs.

fprintf(g2,'*CLS')
fprintf(g2,'*PSC 0')
fprintf(g2,'*ESE 32')
fprintf(g2,'DESE 32')
fprintf(g2,'*SRE 32')

Determine if any instrument needs servicing.

spoll([g1 g2])
ans =
[]

Query the voltage value for each instrument.

fprintf(g1,'Volt?')
fprintf(g2,'Volt?')

Determine if either instrument produced an error due to the preceding query.

out = spoll([g1 g2]);

Because Volt? is an invalid command for the oscilloscope, it is requesting service.

out == [g1 g2]
ans =
0 1

4 Controlling Instruments Using GPIB

4-40

Because Volt? is a valid command for the function generator, the value is read back
successfully.

volt1 = fscanf(g1)
volt1 =
+1.00000E-01

However, the oscilloscope read operation times out after 1 second.

volt2 = fscanf(g2)
Warning: GPIB: NI: An I/O operation has been canceled, most likely
due to a timeout.

volt2 =
''

5 Disconnect and clean up — When you no longer need g1 and g2, you should
disconnect them from the instruments, and remove them from memory and from the
MATLAB workspace.

fclose([g1 g2])
delete([g1 g2])
clear g1 g2

 Serial Polls

4-41

Controlling Instruments Using VISA

This chapter describes specific issues related to controlling instruments that use the
VISA standard.

• “VISA Overview” on page 5-2
• “Working with the GPIB Interface” on page 5-5
• “Working with VXI and PXI Interfaces” on page 5-10
• “Working with the GPIB-VXI Interface” on page 5-22
• “Working with the Serial Port Interface” on page 5-27
• “Working with the USB Interface” on page 5-31
• “Working with the TCP/IP Interface for VXI-11 and HiSLIP” on page 5-35
• “Working with the RSIB Interface” on page 5-39
• “Working with the Generic Interface” on page 5-43
• “Reading and Writing ASCII Data Using VISA” on page 5-46
• “Reading and Writing Binary Data Using VISA” on page 5-52
• “Asynchronous Read and Write Operations Using VISA” on page 5-59

5

VISA Overview

In this section...
“What Is VISA?” on page 5-2
“Interfaces Used with VISA” on page 5-2
“Supported Vendor and Resource Names” on page 5-3

What Is VISA?

Virtual Instrument Standard Architecture (VISA) is a standard defined by Agilent
Technologies and National Instruments for communicating with instruments regardless
of the interface.

The Instrument Control Toolbox software supports the GPIB, VXI, GPIB-VXI, TCP/IP
using VXI-11, TCP/IP using HiSLIP, USB, RSIB, and serial port interfaces using the
VISA standard. Communication is established through a VISA instrument object, which
you create in the MATLAB workspace. For example, a VISA-GPIB object allows you to
use the VISA standard to communicate with an instrument that possesses a GPIB
interface.

Note Most features associated with VISA instrument objects are identical to the features
associated with GPIB and serial port objects. Therefore, this chapter presents only
interface-specific functions and properties. For example, register-based communication is
discussed for VISA-VXI objects, but message-based communication is not discussed as
this topic is covered elsewhere in this guide.

Interfaces Used with VISA

For many VISA applications, you can communicate with your instrument without
detailed knowledge of how the interface works. In this case, you might want to begin
with one of these topics:

• “Working with the GPIB Interface” on page 5-5
• “Working with VXI and PXI Interfaces” on page 5-10
• “Working with the GPIB-VXI Interface” on page 5-22

5 Controlling Instruments Using VISA

5-2

• “Working with the Serial Port Interface” on page 5-27
• “Working with the USB Interface” on page 5-31
• “Working with the TCP/IP Interface for VXI-11 and HiSLIP” on page 5-35
• “Working with the RSIB Interface” on page 5-39

If you want a high-level description of all the steps you are likely to take when
communicating with your instrument, refer to the Getting Started documentation, linked
to at the top of the Instrument Control Toolbox Doc Center page.

Supported Vendor and Resource Names

When you use instrhwinfo to find commands to configure the interface objects, you must
use valid vendor or resource names. The supported values for vendor are given below.
Vendor Description
agilent Agilent Technologies VISA
ni National Instruments VISA
tek Tektronix VISA (see note below for 64-bit support)

Note For 64-bit Tektronix VISA support, it is important to note the following if you have
a multi-vendor VISA installation (e.g., you have installed drivers from Tektronix and
another vendor such as Agilent). If you are using 64-bit Tektronix VISA on a machine
with VISA implementations from multiple vendors, it is required that Tektronix VISA be
configured as the primary VISA for it to be usable with Instrument Control Toolbox.
Most 64-bit VISA implementations include a utility that allows you to select the primary
and preferred VISA implementations. Use the VISA utility to set Tektronix VISA to be
the primary VISA implementation on your machine. This step can be accomplished at
any time, regardless of the order of installation of the VISA drivers.

The format for rsrc name is given below for the supported VISA interfaces. The values
indicated by brackets are optional. You can use the instrument's VISA Alias for
rsrcname.

Interface Resource Name
GPIB GPIB[board]::primary_address[::secondary_address]::INSTR
GPIB-VXI GPIB-VXI[chassis]::VXI_logical_address::INSTR

 VISA Overview

5-3

Interface Resource Name
RSIB RSIB::remote_host::INSTR (provided by NI VISA only)
Serial ASRL[port_number]::INSTR
TCPIP (VXI-11) TCPIP[board]::remote_host[::inst0]::INSTR
TCPIP (HiSLIP) TCPIP[board]::remote_host[::hislip0]::INSTR
USB USB[board]::manid::model_code::serial_No[::interface_No]::INSTR
VXI VXI[chassis]::VXI_logical_address::INSTR

The rsrcname parameters are described below.
Parameter Description
board Board index (optional — defaults to 0)
chassis VXI chassis index (optional — defaults to 0)
interface_No USB interface
lan_device_name Local Area Network (LAN) device name (optional —

defaults to inst0)
manid Manufacturer ID of the USB instrument
model_code Model code for the USB instrument
port_number Serial port number (optional — defaults to 1)
primary_address Primary address of the GPIB instrument
remote_host Host name or IP address of the instrument
secondary_address Secondary address of the GPIB instrument (optional —

defaults to 0)
serial_No Index of the instrument on the USB hub
VXI_logical_address Logical address of the VXI instrument

obj = visa('vendor','rsrcname','PropertyName',PropertyValue,...)
creates the VISA object with the specified property names and property values. If an
invalid property name or property value is specified, an error is returned and the VISA
object is not created.

5 Controlling Instruments Using VISA

5-4

Working with the GPIB Interface
In this section...
“Understanding VISA-GPIB” on page 5-5
“Creating a VISA-GPIB Object” on page 5-5
“VISA-GPIB Address” on page 5-8

Understanding VISA-GPIB

The GPIB interface is supported through a VISA-GPIB object. The features associated
with a VISA-GPIB object are similar to the features associated with a GPIB object.
Therefore, only functions and properties that are unique to VISA's GPIB interface are
discussed in this section.

Refer to “GPIB Overview” on page 4-2 to learn about the GPIB interface, writing and
reading text and binary data, using events and callbacks, using triggers, and so on.

Note The VISA-GPIB object does not support the spoll function, or the
BusManagementStatus, CompareBits, and HandshakeStatus properties.

Creating a VISA-GPIB Object

You create a VISA-GPIB object with the visa function. Each VISA-GPIB object is
associated with

• A GPIB controller installed in your computer
• An instrument with a GPIB interface

visa requires the vendor name and the resource name as input arguments. The vendor
name can be agilent, ni, or tek. The resource name consists of the GPIB board index,
the instrument primary address, and the instrument secondary address. You can find the
VISA-GPIB resource name for a given instrument with the configuration tool provided by
your vendor, or with the instrhwinfo function. (In place of the resource name, you can
use an alias as defined with your VISA vendor configuration tool.) As described in
“Connecting to the Instrument” on page 2-4, you can also configure properties during
object creation.

 Working with the GPIB Interface

5-5

Before you create a VISA object, you must find the instrument in the appropriate vendor
VISA explorer. When you find the instrument configured, note its VISA resource string
and create the object using that information.

For example, to create a VISA-GPIB object associated with a National Instruments
controller with board index 0, and a Tektronix TDS 210 digital oscilloscope with primary
address 1 and secondary address 0,

vg = visa('ni','GPIB0::1::0::INSTR');

The VISA-GPIB object vg now exists in the MATLAB workspace.

To open a connection to the instrument type:

fopen (vg);

You can then display the class of vg with the whos command.

whos vg
 Name Size Bytes Class

 vg 1x1 884 visa object

Grand total is 16 elements using 884 bytes

After you create the VISA-GPIB object, the following properties are automatically
assigned values. These properties provideinformation about the object based on its class
type and address information.
VISA-GPIB Descriptive Properties

Property Name Description
Name Specify a descriptive name for the VISA-GPIB object.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vg.

vg.Name
ans =

'VISA-GPIB0-1'

5 Controlling Instruments Using VISA

5-6

vg.RsrcName
ans =

'GPIB0::1::0::INSTR'

vg.Type
ans =

'visa-gpib'

VISA-GPIB Object Display

The VISA-GPIB object provides a convenient display that summarizes important address
and state information. You can invoke the display summary as follows:

• Type the VISA-GPIB object at the command line.
• Exclude the semicolon when creating a VISA-GPIB object.
• Exclude the semicolon when configuring properties using dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-GPIB object vg is given below.

VISA-GPIB Object Using NI Adaptor : VISA-GPIB0-1

Communication Address
 BoardIndex: 0
 PrimaryAddress: 1
 SecondaryAddress: 0

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

 Working with the GPIB Interface

5-7

VISA-GPIB Address
The VISA-GPIB address consists of

• The board index of the GPIB controller installed in your computer.
• The primary address and secondary address of the instrument. Valid primary

addresses range from 0 to 30. Valid secondary addresses range from 0 to 30, where
the value 0 indicates that the secondary address is not used.

You must specify the primary address value via the resource name during VISA-GPIB
object creation. Additionally, you must include the board index and secondary address
values as part of the resource name if they differ from the default value of 0.

The properties associated with the GPIB address are given below.
VISA-GPIB Address Properties

Property Name Description
BoardIndex Specify the index number of the GPIB board.
PrimaryAddress Specify the primary address of the GPIB instrument.
SecondaryAddress Specify the secondary address of the GPIB instrument.

The BoardIndex, PrimaryAddress, and SecondaryAddress properties are
automatically updated with the specified resource name values when you create the
VISA-GPIB object.

You can display the address property values for the VISA-GPIB object vg created in
“Creating a VISA-GPIB Object” on page 5-5 .

vg.BoardIndex

ans =

 0

vg.PrimaryAddress

ans =

 1

vg.SecondaryAddress

5 Controlling Instruments Using VISA

5-8

ans =

 0

 Working with the GPIB Interface

5-9

Working with VXI and PXI Interfaces

In this section...
“Understanding VISA-VXI” on page 5-10
“Understanding VISA-PXI” on page 5-11
“Creating a VISA-VXI Object” on page 5-11
“VISA-VXI Address” on page 5-13
“Register-Based Communication” on page 5-14

Understanding VISA-VXI

The VXI interface is associated with a VXI controller that you install in slot 0 of a VXI
chassis. This interface, along with the other relevant hardware, is shown below.

The VXI interface is supported through a VISA-VXI object. Many of the features
associated with a VISA-VXI object are similar to the features associated with other
instrument objects. Therefore, only functions and properties that are unique to VISA's
VXI interface are discussed in this section.

Refer to “GPIB Overview” on page 4-2 to learn about general toolbox capabilities such as
writing and reading text and binary data, using events and callbacks, and so on.

5 Controlling Instruments Using VISA

5-10

Understanding VISA-PXI

A PXI interface is supported through a VISA-PXI object. Features associated with a
VISA-PXI object are identical to the features associated with a VISA-VXI object.
Information provided for working with VISA-VXI in this section also works for VISA-PXI.

PXI devices may be supported by other toolboxes or come with higher level drivers that
are easier to interact with than the raw PXI interface.

Creating a VISA-VXI Object

You create a VISA-VXI object with the visa function. Each object is associated with

• A VXI chassis
• A VXI controller in slot 0 of the VXI chassis
• An instrument installed in the VXI chassis

visa requires the vendor name and the resource name as input arguments. The vendor
name is either agilent or ni. The resource name consists of the VXI chassis index and
the instrument logical address. You can find the VISA-VXI resource name for a given
instrument with the configuration tool provided by your vendor, or with the
instrhwinfo function. (In place of the resource name, you can use an alias as defined
with your VISA vendor configuration tool.) As described in “Connecting to the
Instrument” on page 2-4, you can also configure property values during object creation.

Before you create a VISA object, you must find the instrument in the appropriate vendor
VISA explorer. When you find the instrument configured, note the resource string and
create the object using that information. For example, to create a VISA-VXI object
associated with a VXI chassis with index 0 and an Agilent E1432A 16-channel digitizer
with logical address 32,

vv = visa('agilent','VXI0::32::INSTR');

The VISA-VXI object vv now exists in the MATLAB workspace.

To open a connection to the instrument, type:

fopen (vv);

You can then display the class of vv with the whos command.

 Working with VXI and PXI Interfaces

5-11

whos vv
 Name Size Bytes Class

 vv 1x1 882 visa object

Grand total is 15 elements using 882 bytes

After you create the VISA-VXI object, the following properties are automatically assigned
values. These properties provide information about the object based on its class type and
address information.
VISA-VXI Descriptive Properties

Property Name Description
Name Specify a descriptive name for the VISA-VXI object.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vv.

vg.Name
ans =

'VISA-VXI0-32'

vg.RsrcName
ans =

'VXI0::32::INSTR'

vg.Type
ans =

'visa-vxi'

VISA-VXI Object Display

The VISA-VXI object provides you with a convenient display that summarizes important
address and state information. You can invoke the display summary these three ways:

• Type the VISA-VXI object at the command line.
• Exclude the semicolon when creating a VISA-VXI object.

5 Controlling Instruments Using VISA

5-12

• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-VXI object vv is given below.

VISA-VXI Object Using AGILENT Adaptor : VISA-VXI0-32

Communication Address
 ChassisIndex: 0
 LogicalAddress: 32

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

VISA-VXI Address

The VISA-VXI address consists of:

• The chassis index of the VXI chassis
• The logical address of the instrument installed in the VXI chassis

You must specify the logical address value via the resource name during VISA-VXI object
creation. Additionally, you must include the chassis index value as part of the resource
name if it differs from the default value of 0. The properties associated with the chassis
and instrument address are as follows.
VISA-VXI Address Properties

Property Name Description
ChassisIndex Indicate the index number of the VXI chassis.
LogicalAddress Specify the logical address of the VXI instrument.
Slot Indicate the slot location of the VXI instrument.

 Working with VXI and PXI Interfaces

5-13

The ChassisIndex and LogicalAddress properties are automatically updated with
the specified resource name values when you create the VISA-VXI object. The Slot
property is automatically updated after the object is connected to the instrument with
the fopen function.

You can display the address property values for the VISA-VXI object vv created in
“Creating a VISA-VXI Object” on page 5-11.
fopen(vv)
vv.ChassisIndex
ans =

0
vv.LogicalAddress
ans =

32
vv.Slot
ans =

2

Register-Based Communication
VXI instruments are either message-based or register-based. Generally, it is assumed
that message-based instruments are easier to use, while register-based instruments are
faster. A message-based instrument has its own processor that allows it to interpret
high-level commands such as a SCPI command. Therefore, to communicate with a
message-based instrument, you can use the read and write functions fscanf, fread,
fprintf, and fwrite. For detailed information about these functions, refer to
“Communicating with Your Instrument” on page 2-8.

If the message-based instrument also contains shared memory, then you can access the
shared memory through register-based read and write operations. A register-based
instrument usually does not have its own processor to interpret high-level commands.
Therefore, to communicate with a register-based instrument, you need to use read and
write functions that access the register.

There are two types of register-based write and read functions: low-level and high-level.
The main advantage of the high-level functions is ease of use. Refer to “Using High-Level

5 Controlling Instruments Using VISA

5-14

Memory Functions” on page 5-17 for more information. The main advantage of the low-
level functions is speed. Refer to “Using Low-Level Memory Functions” on page 5-19 for
more information.

The functions associated with register-based write and read operations are as follows.
VISA-VXI Register-Based Write and Read Functions

Function Name Description
memmap Map memory for low-level memory read and write operations.
mempeek Low-level memory read from the VXI register.
mempoke Low-level memory write to the VXI register.
memread High-level memory read from the VXI register.
memunmap Unmap memory for low-level memory read and write operations.
memwrite High-level memory write to the VXI register.

The properties associated with register-based write and read operations are given below.
VISA-VXI Register-Based Write and Read Properties

Property Name Description
MappedMemoryBase Indicate the base memory address of the mapped memory.
MappedMemorySize Indicate the size of the mapped memory for low-level read

and write operations.
MemoryBase Indicate the base address of the A24 or A32 space.
MemoryIncrement Specify if the VXI register offset increments after data is

transferred.
MemorySize Indicate the size of the memory requested in the A24 or A32

address space.
MemorySpace Define the address space used by the instrument.

Understanding Your Instrument's Register Characteristics

This example explores the register characteristics for an Agilent E1432A 16-channel 51.2
kSa/s digitizer with a DSP module.

All VXI instruments have an A16 memory space consisting of 64 bytes. It is known as an
A16 space because the addresses are 16 bits wide. Register-based instruments provide a
memory map of the address space that describes the information contained within the

 Working with VXI and PXI Interfaces

5-15

A16 space. Some VXI instruments also have an A24 or A32 space if the 64 bytes provided
by the A16 space are not enough to perform the necessary tasks. A VXI instrument
cannot use both the A24 and A32 space:

1 Create an instrument object — Create the VISA-VXI object vv associated with a
VXI chassis with index 0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
2 Connect to the instrument — Connect vv to the instrument.

fopen(vv)

The MemorySpace property indicates the type of memory space the instrument
supports. By default, all instruments support A16 memory space. However, this
property can be A16/A24 or A16/A32 if the instrument also supports A24 or A32
memory space, respectively.

vv.MemorySpace
ans =
A16/A24

If the VISA-VXI object is not connected to the instrument, MemorySpace always
returns the default value of A16.

The MemoryBase property indicates the base address of the A24 or A32 space, and is
defined as a hexadecimal string. The MemorySize property indicates the size of the
A24 or A32 space. If the VXI instrument supports only the A16 memory space,
MemoryBase defaults to 0H and MemorySize defaults to 0.

vv.MemoryBase
ans =
 200000H

vv.MemorySize
ans =
 262144

3 Disconnect and clean up — When you no longer need vv, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(vv)
delete(vv)
clear vv

5 Controlling Instruments Using VISA

5-16

Using High-Level Memory Functions

This example uses the high-level memory functions, memread and memwrite, to access
register information for an Agilent E1432A 16-channel 51.2 kSa/s digitizer with a DSP
module. The main advantage of these high-level functions is ease of use — you can access
multiple registers with one function call, and the memory that is to be accessed is
automatically mapped for you. The main disadvantage is the lack of speed — they are
slower than the low-level memory functions.

Each register contains 16 bits, and is associated with an offset value that you supply to
memread or memwrite. The first four registers of the digitizer are accessed in this
example, and are described below.
Agilent E1432A Register Information

Register Offset Description
ID 0 This register provides instrument configuration information

and is always defined as CFFF. Bits 15 and 14 are 1, indicating
that the instrument is register-based. Bits 13 and 12 are 0,
indicating that the instrument supports the A24 memory space.
The remaining bits are all 1, indicating the device ID.

Device Type 2 This register provides instrument configuration information.
Bits 15-12 indicate the memory required by the A24 space. The
remaining bits indicate the model code for the instrument.

Status 4 This register provides instrument status information. For
example, bit 15 indicates whether you can access the A24
registers, and bit 6 indicates whether a DSP communication
error occurred.

Offset 6 This register defines the base address of the instrument's A24
registers. Bits 15-12 map the VME Bus address lines A23-A20
for A24 register access. The remaining bits are all 0.

For more detailed information about these registers, refer to the HP E1432A User's
Guide.

1 Create an instrument object — Create the VISA-VXI object vv associated with a
VXI chassis with index 0, and an Agilent E1432A digitizer with logical address is
130.

vv = visa('agilent','VXI0::130::INSTR');

 Working with VXI and PXI Interfaces

5-17

2 Connect to the instrument — Connect vv to the instrument.

fopen(vv)
3 Write and read data — The following command performs a high-level read of the

ID Register, which has an offset of 0.

reg1 = memread(vv,0,'uint16','A16')
reg1 =
 53247

Convert reg1 to a hexadecimal value and a binary string. Note that the hex value is
CFFF and the least significant 12 bits are all 1, as expected.

dec2hex(reg1)
ans =
CFFF
dec2bin(reg1)
ans =
1100111111111111

You can read multiple registers with memread. The following command reads the
next three registers. An offset of 2 indicates that the read operation begins with the
Device Type Register.

reg24 = memread(vv,2,'uint16','A16',3)
reg24 =
 20993
 50012
 40960

The following commands write to the Offset Register and then read the value back.
Note that if you change the value of this register, you will not be able to access the
A24 space.

memwrite(vv,45056,6,'uint16','A16');
reg4 = memread(vv,6,'uint16','A16')
reg4 =
 45056

Note that the least significant 12 bits are all 0, as expected.

dec2bin(reg4,16)
ans =
1011000000000000

5 Controlling Instruments Using VISA

5-18

Restore the original register value, which is stored in the reg24 variable.

memwrite(vv,reg24(3),6,'uint16','A16');
4 Disconnect and clean up — When you no longer need vv, you should disconnect it

from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(vv)
delete(vv)
clear vv

Using Low-Level Memory Functions

This example uses the low-level memory functions mempeek and mempoke to access
register information for an Agilent E1432A 16-channel 51.2 kSa/s digitizer with a DSP
module. The main advantage of these low-level functions is speed — they are faster than
the high-level memory functions. The main disadvantages include the inability to access
multiple registers with one function call, errors are not reported, and you must map the
memory that is to be accessed.

For information about the digitizer registers accessed in this example, refer to “Using
High-Level Memory Functions” on page 5-17:

1 Create an instrument object — Create the VISA-VXI object vv associated with a
VXI chassis with index 0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
2 Connect to the instrument — Connect vv to the instrument.

fopen(vv)
3 Write and read data — Before you can use the low-level memory functions, you

must first map the memory space with the memmap function. If the memory
requested by memmap does not exist, an error is returned. The following command
maps the first 16 registers of the A16 memory space.

memmap(vv,'A16',0,16);

The MappedMemoryBase and MappedMemorySize properties indicate if memory has
been mapped. MappedMemoryBase is the base address of the mapped memory and is
defined as a hexadecimal string. MappedMemorySize is the size of the mapped
memory. These properties are similar to the MemoryBase and MemorySize
properties that describe the A24 or A32 memory space.

 Working with VXI and PXI Interfaces

5-19

vv.MappedMemoryBase
ans =
 16737610H

vv.MappedMemorySize
ans =
 16

The following command performs a low-level read of the ID Register, which has an
offset of 0.
reg1 = mempeek(vv,0,'uint16')
reg1 =
 53247

The following command performs a low-level read of the Offset Register, which has
an offset of 6.
reg4 = mempeek(vv,6,'uint16')
reg4 =
 40960

The following commands write to the Offset Register and then read the value back.
Note that if you change the value of this register, you will not be able to access the
A24 space.
mempoke(vv,45056,6,'uint16');
mempeek(vv,6,'uint16')
ans =
 45056

Restore the original register value.
mempoke(vv,reg4,6,'uint16');

When you have finished accessing the registers, you should unmap the memory with
the memunmap function.

memunmap(vv)
vv.MappedMemoryBase
ans =
 0H

vv.MappedMemorySize
ans =
 0

5 Controlling Instruments Using VISA

5-20

If memory is still mapped when the object is disconnected from the instrument, the
memory is automatically unmapped for you.

4 Disconnect and clean up — When you no longer need vv, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(vv)
delete(vv)
clear vv

 Working with VXI and PXI Interfaces

5-21

Working with the GPIB-VXI Interface
In this section...
“Understanding VISA-GPIB-VXI” on page 5-22
“Creating a VISA-GPIB-VXI Object” on page 5-23
“VISA-GPIB-VXI Address” on page 5-25

Understanding VISA-GPIB-VXI

The GPIB-VXI interface is associated with a GPIB-VXI command module that you install
in slot 0 of a VXI chassis. This interface, along with the other relevant hardware, is
shown below.

The GPIB-VXI interface is supported through a VISA-GPIB-VXI object. The features
associated with a VISA-GPIB-VXI object are similar to the features associated with GPIB
and VISA-VXI objects. Therefore, only functions and properties that are unique to VISA's
GPIB-VXI interface are discussed in this section.

Refer to “GPIB Overview” on page 4-2 to learn about writing and reading text and binary
data, using events and callbacks, using triggers, and so on. Refer to “Register-Based
Communication” on page 5-14to learn about accessing VXI registers.

5 Controlling Instruments Using VISA

5-22

Note The VISA-GPIB-VXI object does not support the spoll and trigger functions, or
the BusManagementStatus, HandshakeStatus, InterruptFcn, TriggerFcn,
TriggerLine, and TriggerType properties.

Creating a VISA-GPIB-VXI Object
You create a VISA-GPIB-VXI object with the visa function. As shown in the preceding
figure, each object is associated with the following:

• A GPIB controller installed in your computer
• A VXI chassis
• A GPIB-VXI command module in slot 0 of the VXI chassis
• An instrument installed in the VXI chassis

visa requires the vendor name and the resource name as input arguments. The vendor
name is either agilent or ni. The resource name consists of the VXI chassis index and
the instrument logical address. You can find the VISA-GPIB-VXI resource name for a
given instrument with the configuration tool provided by your vendor, or with the
instrhwinfo function. (In place of the resource name, you can use an alias as defined
with your VISA vendor configuration tool.) As described in “Connecting to the
Instrument” on page 2-4, you can also configure property values during object creation.

Before you create a VISA object, you must find the instrument in the appropriate vendor
VISA explorer. When you find the instrument configured, note the resource string and
create the object using that information. For example, to create a VISA-GPIB-VXI object
associated with a VXI chassis with index 0, an Agilent E1406A Command Module in slot
0, and an Agilent E1441A Arbitrary Waveform Generator in slot 2 with logical address
80,
vgv = visa('agilent','GPIB-VXI0::80::INSTR');

The VISA-GPIB-VXI object vgv now exists in the MATLAB workspace.

To open a connection to the instrument type:
fopen (vgv);

You can then display the class of vgv with the whos command.

whos vgv
 Name Size Bytes Class

 Working with the GPIB-VXI Interface

5-23

 vgv 1x1 892 visa object

Grand total is 20 elements using 892 bytes

After you create the VISA-GPIB-VXI object, the properties listed below are automatically
assigned values. These properties provide descriptive information about the object based
on its class type and address information.
VISA-GPIB-VXI Descriptive Properties

Property Name Description
Name Specify a descriptive name for the VISA-GPIB-VXI object.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vgv.

vgv.Name
ans =
VISA-GPIB-VXI0-80

vgv.RsrcName
ans =
GPIB-VXI0::80::INSTR

vgv.Type
ans =
visa-gpib-vxi

Note The GPIB-VXI communication interface is a combination of the GPIB and VXI
interfaces. Therefore, you can also use a VISA-GPIB object to communicate with
instruments installed in the VXI chassis, or to communicate with non-VXI instruments
connected to the slot 0 controller.

VISA-GPIB-VXI Object Display

The VISA-GPIB-VXI object provides you with a convenient display that summarizes
important address and state information. You can invoke the display summary these
three ways:

5 Controlling Instruments Using VISA

5-24

• Type the VISA-GPIB-VXI object at the command line.
• Exclude the semicolon when creating a VISA-GPIB-VXI object.
• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-GPIB-VXI object vgv is given below.

VISA-GPIB-VXI Object Using AGILENT Adaptor : VISA-GPIB-VXI0-80

Communication Address
 ChassisIndex: 0
 LogicalAddress: 80

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

VISA-GPIB-VXI Address

The VISA-GPIB-VXI address consists of a VXI component and a GPIB component. The
VXI component includes the following:

• The chassis index of the VXI chassis
• The logical address of the VXI instrument; the logical address must be 0, or it must be

divisible by 8
• The slot of the VXI instrument

The GPIB component includes

• The board index of the GPIB controller installed in your computer
• The primary address of the GPIB-VXI command module in slot 0
• The secondary address of the VXI instrument

 Working with the GPIB-VXI Interface

5-25

You must specify the logical address value via the resource name during VISA-GPIB-VXI
object creation. Additionally, you must include the chassis index value as part of the
resource name if it differs from the default value of 0. The properties associated with the
VISA-GPIB-VXI address are given below.
VISA-GPIB-VXI Address Properties

Property Name Description
BoardIndex Indicate the index number of the GPIB board.
ChassisIndex Specify the index number of the VXI chassis.
LogicalAddress Specify the logical address of the VXI instrument.
PrimaryAddress Indicate the primary address of the GPIB-VXI command

module.
SecondaryAddress Indicate the secondary address of the VXI instrument.
Slot Indicate the slot location of the VXI instrument.

The ChassisIndex and LogicalAddress properties are automatically updated with
the specified resource name values when you create the VISA-GPIB-VXI object. The
BoardIndex, PrimaryAddress, SecondaryAddress, and Slot properties are
automatically updated after the object is connected to the instrument with the fopen
function.

You can display the address property values for the VISA-GPIB-VXI object vgv created
in “Creating a VISA-GPIB-VXI Object” on page 5-23.

fopen(vgv)
get(vgv,{'BoardIndex','ChassisIndex','LogicalAddress',...
'PrimaryAddress','SecondaryAddress','Slot'})
ans =
 [0] [0] [80] [9] [10] [2]

5 Controlling Instruments Using VISA

5-26

Working with the Serial Port Interface

In this section...
“Understanding the Serial Port” on page 5-27
“Creating a VISA-Serial Object” on page 5-27
“Configuring Communication Settings” on page 5-29

Understanding the Serial Port

The serial port interface is supported through a VISA-serial object. The features
associated with a VISA-serial object are similar to the features associated with a serial
port object. Therefore, only functions and properties that are unique to VISA's serial port
interface are discussed in this section.

Refer to “Serial Port Overview” on page 6-2 to learn about writing and reading text
and binary data, using events and callbacks, using serial port control lines, and so on.

Note The VISA-serial object does not support the serialbreak function, the
BreakInterruptFcn property, and the PinStatusFcn property.

Creating a VISA-Serial Object

You create a VISA-serial object with the visa function. Each VISA-serial object is
associated with an instrument connected to a serial port on your computer.

visa requires the vendor name and the resource name as input arguments. The vendor
name can be agilent, ni, or tek. The resource name consists of the name of the serial
port connected to your instrument. You can find the VISA-serial resource name for a
given instrument with the configuration tool provided by your vendor, or with the
instrhwinfo function. (In place of the resource name, you can use an alias as defined
with your VISA vendor configuration tool.) As described in “Connecting to the
Instrument” on page 2-4, you can also configure property values during object creation.

Some vendors do not provide VISA serial support until you enable a port in their
configuration tools. Before you create a VISA object, find the instrument in the
appropriate vendor VISA explorer. When you find the instrument configured, note the

 Working with the Serial Port Interface

5-27

resource string and create the object using that information. For example, to create a
VISA-serial object that is associated with the COM1 port, and that uses National
Instruments VISA,

vs = visa('ni','ASRL1::INSTR');

The VISA-serial object vs now exists in the MATLAB workspace.

To open a connection with the instrument, type:

fopen (vs);

You can then display the class of vs with the whos command.

whos vs
 Name Size Bytes Class

 vs 1x1 888 visa object

Grand total is 18 elements using 888 bytes

After you create the VISA-serial object, the properties listed below are automatically
assigned values. These properties provide descriptive information about the object based
on its class type and address information.
VISA-Serial Descriptive Properties

Property Name Description
Name Specify a descriptive name for the VISA-serial object.
Port Indicate the serial port name.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vs.

vs.Name
ans =
VISA-Serial-ASRL1

vs.Port
ans =
ASRL1

5 Controlling Instruments Using VISA

5-28

vs.RsrcName
ans =
ASRL1::INSTR
vs.Type
ans =
visa-serial

VISA-Serial Object Display

The VISA-serial object provides you with a convenient display that summarizes
important address and state information. You can invoke the display summary these
three ways:

• Type the VISA-serial object at the command line.
• Exclude the semicolon when creating a VISA-serial object.
• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-serial object vs is given below.
VISA-Serial Object Using NI Adaptor : VISA-Serial-ASRL1

Communication Settings
 Port: ASRL1
 BaudRate: 9600
 Terminator: 'LF'

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

Configuring Communication Settings
Before you can write or read data, both the VISA-serial object and the instrument must
have identical communication settings. Configuring serial port communications involves

 Working with the Serial Port Interface

5-29

specifying values for properties that control the baud rate and the “Serial Data Format”
on page 6-8. These properties are given below.
VISA-Serial Communication Properties

Property Name Description
BaudRate Specify the rate at which bits are transmitted.
DataBits Specify the number of data bits to transmit.
Parity Specify the type of parity checking.
StopBits Specify the number of bits used to indicate the end of a byte.
Terminator Specify the character used to terminate commands written to the

instrument.

Refer to your instrument documentation for an explanation of its supported
communication settings. Note that the valid values for StopBits are 1 and 2 and the
valid values for Terminator do not include CR/LF and LF/CR. These property values
differ from the values supported for the serial port object.

You can display the default communication property values for the VISA-serial object vs
created in “Creating a VISA-Serial Object” on page 5-27.

vs.BaudRate
ans =
 9600

vs.DataBits
ans =
 8

vs.Parity
ans =
 none

vs.StopBits
ans =
 1

vs.Terminator
ans =
 LF

5 Controlling Instruments Using VISA

5-30

Working with the USB Interface
In this section...
“Creating a VISA-USB Object” on page 5-31
“VISA-USB Address” on page 5-33

Creating a VISA-USB Object
You create a VISA-USB object with the visa function. Each VISA-USB object is
associated with an instrument connected to a USB port on your computer.

visa requires the vendor name and the resource name as input arguments. The vendor
name can be agilent, ni, or tek. The resource name consists of the USB board index,
manufacturer ID, model code, serial number, and interface number of the connected
instrument. You can find the VISA-USB resource name for a given instrument with the
configuration tool provided by your vendor, or with the instrhwinfo function. (In place
of the resource name, you can use an alias as defined with your VISA vendor
configuration tool.) As described in “Connecting to the Instrument” on page 2-4, you can
also configure property values during object creation.

Before you create a VISA object, you must find the instrument in the appropriate vendor
VISA explorer. When you find the instrument configured, note the resource string and
create the object using that information. For example, to create a VISA-USB object that
uses National Instruments VISA,
vu = visa('ni','USB::0x1234::125::A22-5::INSTR');

The VISA-USB object vu now exists in the MATLAB workspace.

To open a connection to the instrument, type:
fopen (vu);

You can display the class of vu with the whos command.

whos vu
 Name Size Bytes Class

 vu 1x1 882 visa object

Grand total is 15 elements using 882 bytes

 Working with the USB Interface

5-31

After you create the VISA-USB object, the properties listed below are automatically
assigned values. These properties provide descriptive information about the object based
on its class type and address information.
VISA-USB Descriptive Properties

Property Name Description
Name Specify a descriptive name for the VISA-USB object.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vs.

vu.Name
ans =
VISA-USB-0-0x1234-125-A22-5-0

vu.RsrcName
ans =
USB::0x1234::125::A22-5::INSTR

vu.Type
ans =
visa-usb

VISA-USB Object Display

The VISA-USB object provides you with a convenient display that summarizes important
address and state information. You can invoke the display summary these three ways:

• Type the VISA-USB object at the command line.
• Exclude the semicolon when creating a VISA-USB object.
• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-USB object vs is given below.

VISA-USB Object Using NI Adaptor : VISA-USB-0-0x1234-125-A22-5-0

Communication Address
 ManufacturerID: 0x1234

5 Controlling Instruments Using VISA

5-32

 ModelCode: 125
 SerialNumber: A22-5

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

VISA-USB Address

The VISA-USB address consists of

• Board index (optional, from the VISA configuration)
• Manufacturer ID of the instrument
• Model code of the instrument
• Serial number of the instrument
• Interface number (optional, from the VISA configuration)

You specify these address property values via the resource name during VISA-USB
object creation. The instrument address properties are given below.
VISA-USB Address Properties

Property Name Description
BoardIndex Specify the index number of the USB board in VISA configuration

(optional — defaults to 0).
InterfaceIndex Specify the USB interface number (optional).
ManufacturerID Specify the manufacturer ID of the USB instrument.
ModelCode Specify the model code of the USB instrument.
SerialNumber Specify the index of the USB instrument on the USB hub.

The properties are automatically updated with the specified resource name values when
you create the VISA-USB object.

 Working with the USB Interface

5-33

You can display the address property values for the VISA-USB object vu, created in
“Creating a VISA-USB Object” on page 5-31.

fopen(vu)
vu.ManufacturerID
ans =
 0x1234

vu.ModelCode
ans =
 125

vu.SerialNumber
ans =
 A22-5

5 Controlling Instruments Using VISA

5-34

Working with the TCP/IP Interface for VXI-11 and HiSLIP
In this section...
“Understanding VISA-TCP/IP” on page 5-35
“Creating a VISA-TCPIP Object” on page 5-35
“VISA-TCPIP Address” on page 5-37

Understanding VISA-TCP/IP

The TCP/IP interface is supported through a VISA-TCP/IP object. The features
associated with a VISA-TCP/IP object are similar to the features associated with a tcpip
object. Therefore, only functions and properties that are unique to VISA's TCP/IP
interface are discussed in this section. Both VXI-11 and HiSLIP protocols are supported.

Refer to “TCP/IP and UDP Comparison” on page 7-2 to learn about writing and
reading text and binary data, using events and callbacks, and so on.

Creating a VISA-TCPIP Object

You create a VISA-TCPIP object with the visa function. Each VISA-TCPIP object is
associated with an instrument connected to your computer.

visa requires the vendor name and the resource name as input arguments. The vendor
name can be agilent, ni, or tek. The resource name consists of the TCP/IP board
index, IP address or host name, and LAN device name of your instrument. You can find
the VISA-TCPIP resource name for a given instrument with the configuration tool
provided by your vendor, or with the instrhwinfo function. (In place of the resource
name, you can use an alias as defined with your VISA vendor configuration tool.) As
described in “Connecting to the Instrument” on page 2-4, you can also configure property
values during object creation.

Before you create a VISA object, you must find the instrument in the appropriate vendor
VISA explorer. When you find the instrument configured, note the resource string and
create the object using that information. For example, to create a VISA-TCPIP object
that uses National Instruments VISA associated with an instrument at IP address
216.148.60.170 using the VXI-11 protocol,

vt = visa('ni','TCPIP::216.148.60.170::INSTR');

 Working with the TCP/IP Interface for VXI-11 and HiSLIP

5-35

The VISA-TCPIP object vt now exists in the MATLAB workspace.

To open an connection to the instrument, type:

fopen (vt);

You can display the class of vt with the whos command.

whos vt
 Name Size Bytes Class

 vt 1x1 886 visa object

Grand total is 17 elements using 886 bytes

After you create the VISA-TCPIP object, the properties listed below are automatically
assigned values. These properties provide descriptive information about the object based
on its class type and address information.
VISA-TCPIP Descriptive Properties

Property Name Description
Name Specify a descriptive name for the VISA-TCPIP object.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vt.

vt.Name
ans =
VISA-TCPIP-216.148.60.170

vt.RsrcName
ans =
TCPIP::216.148.60.170::INSTR

vt.Type
ans =
visa-tcpip

5 Controlling Instruments Using VISA

5-36

VISA-TCPIP Object Display

The VISA-TCPIP object provides you with a convenient display that summarizes
important address and state information. You can invoke the display summary these
three ways:

• Type the VISA-TCPIP object at the command line.
• Exclude the semicolon when creating a VISA-TCPIP object.
• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-TCPIP object vt is given below.

VISA-TCPIP Object Using NI Adaptor : VISA-TCPIP-216.148.60.170

Communication Address
 RemoteHost: 216.148.60.170

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

VISA-TCPIP Address

The VISA-TCPIP address consists of

• Board index (optional, from the VISA configuration)
• Remote host of the instrument
• The protocol, either VXI-11 or HiSLIP
• LAN device name of the instrument (optional)

You specify these address property values via the resource name during VISA-TCPIP
object creation. The instrument address properties are given below.

 Working with the TCP/IP Interface for VXI-11 and HiSLIP

5-37

VISA-TCPIP Address Properties

Property Name Description
BoardIndex Specify the index number of the TCP/IP board in VISA

configuration (optional — defaults to 0).
RemoteHost Specify the remote host name or IP address of the

instrument.
LANName Specify the LAN device name of the instrument.

The properties are automatically updated with the specified resource name values when
you create the VISA-TCPIP object.

You can display the address property values for the VISA-TCPIP object vt, created in
“Creating a VISA-TCPIP Object” on page 5-35.

fopen(vt)
vt.RemoteHost
ans =
 216.148.60.170

5 Controlling Instruments Using VISA

5-38

Working with the RSIB Interface
In this section...
“Understanding VISA-RSIB” on page 5-39
“Creating a VISA-RSIB Object” on page 5-39
“VISA-RSIB Address” on page 5-41

Understanding VISA-RSIB

RSIB Passport for VISA allows you to control and exchange data remotely with Rohde &
Schwarz spectrum and network analyzers over a local area network. The RSIB interface
is supported by National Instruments VISA only. It also requires the Rohde & Schwarz
VISA passport. You can use MATLAB and Rohde & Schwarz spectrum and network
analyzers to perform complex data analysis on measured telecommunication signals and
to verify simulated data against real measurement data.

Creating a VISA-RSIB Object

You create a VISA-RSIB object with the visa function. Each VISA-RSIB object is
associated with an instrument connected to your computer.

visa requires the vendor name and the resource name as input arguments. The only
supported vendor name is ni. The resource name consists of the IP address or host name
of the instrument. You can find the VISA-RSIB resource name for a given instrument
with the configuration tool provided by your vendor, or with the instrhwinfo function.
(In place of the resource name, you can use an alias as defined with your VISA vendor
configuration tool.) As described in “Connecting to the Instrument” on page 2-4, you can
also configure properties during object creation.

Before you create a VISA object, you must find the instrument in the appropriate vendor
VISA explorer. When you find the instrument configured, note the resource string and
create the object using that information. For example, to create a VISA-RSIB object that
uses National Instruments VISA and associated with an instrument with IP address
192.168.1.33,

vr = visa('ni','RSIB::192.168.1.33::INSTR');

The VISA-RSIB object vr now exists in the MATLAB workspace.

 Working with the RSIB Interface

5-39

To open a connection to the instrument, type:

fopen (vr);

You can display the class of vr with the whos command.

whos vr
 Name Size Bytes Class

 vr 1x1 884 visa object

Grand total is 16 elements using 884 bytes

After you create the VISA-RSIB object, the properties listed below are automatically
assigned values. These properties provide descriptive information about the object based
on its class type and address information.
VISA-RSIB Descriptive Properties

Property Name Description
Name Specify a descriptive name for the VISA-RSIB object.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vr.

vr.Name
ans =
 VISA-RSIB0-192.168.1.33

vr.RsrcName
ans =
 RSIB0::192.168.1.33::INSTR

vr.Type
ans =
 visa-RSIB

VISA-RSIB Object Display

The VISA-RSIB object provides you with a convenient display that summarizes
important address and state information. You can invoke the display summary these
three ways:

5 Controlling Instruments Using VISA

5-40

• Type the VISA-RSIB object at the command line.
• Exclude the semicolon when creating a VISA-RSIB object.
• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-RSIB object vr is given below.

VISA-RSIB Object Using NI Adaptor : VISA-RSIB-192.168.1.33

Communication Address
 RemoteHost: 192.168.1.33

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

VISA-RSIB Address
The VISA-RSIB address consists of

• Remote host of the instrument

You specify the address property value via the resource name during VISA-RSIB object
creation. The instrument address property is given below.
VISA-RSIB Address Property

Property Name Description
RemoteHost Specify the remote host name or IP address of the instrument

The property is automatically updated with the specified resource name value when you
create the VISA-RSIB object.

You can display the address property value for the VISA-RSIB object vr, created in
“Creating a VISA-RSIB Object” on page 5-39.

 Working with the RSIB Interface

5-41

fopen(vr)
vr.RemoteHost
ans =
 192.168.1.33

5 Controlling Instruments Using VISA

5-42

Working with the Generic Interface
In this section...
“Generic VISA” on page 5-43
“VISA Node and Generic VISA Support in Test & Measurement Tool” on page 5-43
“Generic VISA Support in the Command-line Interface” on page 5-43

Generic VISA

In both the command-line toolbox and the Test & Measurement Tool, a generic VISA
interface is now supported. In the Test & Measurement Tool, generic devices will appear
in the More node under the VISA node. In the command-line toolbox, they are available
as a type 'generic'.

For example, if you have a generic VISA device that is made by National Instruments,
you could use the instrhwinfo function to see it, as follows.

instrhwinfo('visa','ni','generic')

This generic support can be used to communicate over open VISA sockets, USB Raw, etc.

VISA Node and Generic VISA Support in Test & Measurement Tool

In the Test & Measurement Tool, instruments that use the VISA interface show up
under the VISA node in the instrument tree. For example, if you are using a TCP/IP
instrument with the VISA interface, instead of a TCP/IP - VISA node in the tree, you
will see a VISA node, with a TCP/IP node under it. It is easier to see what protocols can
be used with the VISA interface with the VISA node.

Generic devices will appear in a More node under the VISA node in the instrument tree.
If your instrument is recognizable as a type such as 'gpib' or 'tcpip', it will show up
in that type-specific node. For example, a TCP/IP instrument would show up in the
TCPIP node under the VISA node. But if it is a generic instrument, it will show up in
the More node.

Generic VISA Support in the Command-line Interface

You can use the instrhwinfo function to see generic VISA devices.

 Working with the Generic Interface

5-43

instrhwinfo('INTERFACE', 'ADAPTOR', 'TYPE')

INTERFACE is 'visa'. ADAPTOR can be 'agilent', 'ni' or 'tek', depending on
whether your instrument vendor is Agilent, National Instruments, or Tektronix. TYPE
can be 'gpib', 'vxi', 'gpib-vxi', 'serial', 'tcpip', 'usb', 'rsib', 'pxi', or
'generic'. Use 'generic' when it is a generic device or form of communication.

For example:

This shows that there are four generic devices using the NI adaptor. If you look at the
object constructor names, you can see the four devices.

In this example, there are three instruments capable of TCP/IP socket communication,
and one of raw USB communication.

To communicate with a generic instrument using the generic interface, use the same
functions, properties, and work flows described in the other interface sections of the
VISA documentation.

5 Controlling Instruments Using VISA

5-44

Note Some VISA drivers do not support EOI Mode. Therefore, if a device does not
support EOI Mode, the VISA generic adaptor will default to 'off' for the EOI Mode
property, so that it does not cause a failure.

 Working with the Generic Interface

5-45

Reading and Writing ASCII Data Using VISA

In this section...
“Configuring and Connecting to the Instrument” on page 5-47
“Writing ASCII Data” on page 5-47
“ASCII Write Properties” on page 5-48
“Reading ASCII Data” on page 5-49
“ASCII Read Properties” on page 5-50
“Cleanup” on page 5-51

This example explores ASCII read and write operations with a VISA object. The
instrument used was a Tektronix® TDS 210 oscilloscope.

The VISA object supports seven interfaces: serial, GPIB, VXI, GPIB-VXI, TCPIP, USB,
and RSIB. This example explores ASCII read and write operations using a VISA-GPIB
object. However, ASCII read and write operations for VISA-GPIB, VISA-VXI, VISA-
GPIB-VXI, VISA-TCPIP, VISA-SERIAL, and VISA-USB objects are identical to each
other. Therefore, you can use the same commands. The only difference is the resource
name specified in the VISA constructor.

ASCII read and write operations for the VISA-serial object are identical to ASCII read
and write operations for the serial port object. Therefore, to learn how to perform ASCII
read and write operations for the VISA-serial object, you should refer to the Serial Port
ASCII Read/Write tutorial.

ASCII read and write operations for the VISA-RSIB object are identical to the ASCII
read and write operations for the VISA-GPIB, VISA-VXI, VISA-GPIB-VXI, VISA-TCPIP,
and VISA-USB objects, except the VISA-RSIB object does not support the EOSCharCode
and EOSMode properties.

These functions are used when reading and writing text:
Function Purpose
fprintf Write text to an instrument.
fscanf Read data from an instrument and format as text.

These properties are associated with reading and writing text:

5 Controlling Instruments Using VISA

5-46

Property Purpose
ValuesReceived Specifies the total number of values read from the instrument.
ValuesSent Specifies the total number of values sent to the instrument.
InputBufferSize Specifies the total number of bytes that can be queued in the

input buffer at one time.
OutputBufferSize Specifies the total number of bytes that can be queued in the

output buffer at one time.
EOSMode Configures the End-Of-String termination mode.
EOSCharCode Specifies the End-Of-String terminator.
EOIMode Enables or disables the assertion of the EOI mode at the end of a

write operation.

Configuring and Connecting to the Instrument

You need to create a VISA-GPIB object. In this example, an object is created using the ni
driver and the VISA resource string shown below.

v = visa('ni', 'GPIB0::2::INSTR');

Before you can perform a read or write operation, you must connect the VISA-GPIB
object to the instrument with the fopen function.

fopen(v);

If the object was successfully connected, its Status property is automatically configured
to open.

v.Status
ans =
 open

Writing ASCII Data

You use the fprintf function to write ASCII data to the instrument. For example,
the'Display:Contrast' command will change the display contrast of the oscilloscope.

fprintf(v, 'Display:Contrast 45');

 Reading and Writing ASCII Data Using VISA

5-47

By default, the fprintf function operates in a synchronous mode. This means that
fprintf blocks the MATLAB command line until one of the following occurs:

• All the data is written
• A timeout occurs as specified by the Timeout property

By default the fprintf function writes ASCII data using the %s\n format. You can also
specify the format of the command written by providing a third input argument to
fprintf. The accepted format conversion characters include: d, i, o, u, x, X, f, e, E, g, G,
c, and s. For example:

fprintf(v, '%s', 'Display:Contrast 45');

ASCII Write Properties

OutputBufferSize

The OutputBufferSize property specifies the maximum number of bytes that can be
written to the instrument at once. By default, OutputBufferSize is 512.

v.OutputBufferSize
ans =
 512

If the command specified in fprintf contains more than 512 bytes, an error is returned
and no data is written to the instrument.

EOIMode, EOSMode, and EOSCharCode

By default, the End or Identify (EOI) line is asserted when the last byte is written to the
instrument. This behavior is controlled by the EOIMode property. When EOIMode is set
to on, the EOI line is asserted when the last byte is written to the instrument. When
EOIMode is set to off, the EOI line is not asserted when the last byte is written to the
instrument.

All occurrences of \n in the command written to the instrument are replaced with the
EOSCharCode property value if EOSMode is set to write or read&write.

ValuesSent

5 Controlling Instruments Using VISA

5-48

The ValuesSent property is updated by the number of values written to the instrument.
Note that by default EOSMode is set to none. Therefore, EOSCharCode is not sent as the
last byte of the write.

fprintf(v, 'Display:Contrast 45');
v.ValuesSent
ans =
 57

Clear any data in the input buffer before moving to the next step.

flushinput(v);

Reading ASCII Data

You use the fscanf function to read ASCII data from the instrument. For example, the
oscilloscope command 'Display:Contrast?' returns the oscilloscope's display
contrast:

fprintf(v, 'Display:Contrast?');
data = fscanf(v)

data =

 45

fscanf blocks until one of the following occurs:

• The EOI line is asserted
• The terminator is received as specified by the EOSCharCode property
• A timeout occurs as specified by the Timeout property
• The input buffer is filled
• The specified number of values is received

By default, the fscanf function reads data using the '%c' format. You can also specify
the format of the data read by providing a second input argument to fscanf. The
accepted format conversion characters include: d, i, o, u, x, X, f, e, E, g, G, c, and s. For
example, the following command will return the voltage as a decimal:

fprintf(v, 'Display:Contrast?');
data = fscanf(v, '%d')

 Reading and Writing ASCII Data Using VISA

5-49

data =

 45

isnumeric(data)

ans =

 1

ASCII Read Properties
InputBufferSize

The InputBufferSize property specifies the maximum number of bytes you can read
from the instrument. By default, InputBufferSize is 512.

v.InputBufferSize
ans =
 512

ValuesReceived

The ValuesReceived property indicates the total number of values read from the
instrument. Note the last value received is a linefeed.
fprintf(v, 'Display:Contrast?');
data = fscanf(v)

data =

 45

v.ValuesReceived

ans =

 9

EOSMode and EOSCharCode

To terminate the data transfer based on receiving EOSCharCode, you should set the
EOSMode property to read or read&write and the EOSCharCode property to the ASCII

5 Controlling Instruments Using VISA

5-50

code for which the read operation should terminate. For example, if you set EOSMode to
read and EOSCharCode to 10, then one of the ways that the read terminates is when the
linefeed character is received.

The standard response to the vertical gain query is in scientific notation.

fprintf(v, 'CH1:Scale?')
data = fscanf(v)

data =

 1.0E0

Now configure the VISA-GPIB object to terminate the read operation when the 'E'
character is received. The first read terminates when the 'E' character is received.

set(v, 'EOSMode', 'read')
set(v, 'EOSCharCode', double('E'))
fprintf(v, 'CH1:Scale?')
data = fscanf(v)

data =

1.0E

If you perform a second read operation, it terminates when the EOI line is asserted.

data = fscanf(v)

data =

 0

Cleanup

If you are finished with the VISA-GPIB object, disconnect it from the instrument, remove
it from memory, and remove it from the workspace.

fclose(v);
delete(v);
clear v

 Reading and Writing ASCII Data Using VISA

5-51

Reading and Writing Binary Data Using VISA

In this section...
“Configuring and Connecting to the Instrument” on page 5-53
“Writing Binary Data” on page 5-53
“Binary Write Properties” on page 5-54
“Reading Binary Data” on page 5-55
“Binary Read Properties” on page 5-55
“Cleanup” on page 5-57

This example explores binary read and write operations with a VISA object. The
instrument used was a Tektronix® TDS 210 oscilloscope.

This tutorial explores binary read and write operations using a VISA-GPIB object.
However, binary read and write operations for VISA-GPIB, VISA-VXI, VISA-GPIB-VXI,
VISA-TCPIP, and VISA-USB objects are identical to each other. Therefore, you can use
the same commands. The only difference is the resource name specified in the VISA
constructor.

Binary read and write operations for the VISA-serial object are identical to binary read
and write operations for the serial port object. Therefore, to learn how to perform binary
read and write operations for the VISA-serial object, you should refer to the Serial Port
Binary Read/Write tutorial.

Binary read and write operations for the VISA-RSIB object are identical to the binary
read and write operations for the VISA-GPIB, VISA-VXI, VISA-GPIB-VXI, VISA-TCPIP,
and VISA-USB objects, except the VISA-RSIB object does not support the EOSCharCode
and EOSMode properties.

These functions are used when reading and writing binary data:
Function Purpose
fread Read binary data from the instrument.
fwrite Write binary data to the instrument.

These properties are associated with reading and writing binary data:

5 Controlling Instruments Using VISA

5-52

Property Purpose
ValuesReceived Specifies the total number of values read from the instrument.
ValuesSent Specifies the total number of values sent to the instrument.
InputBufferSize Specifies the total number of bytes that can be queued in the

input buffer at one time.
OutputBufferSize Specifies the total number of bytes that can be queued in the

output buffer at one time.
EOSMode Configures the End-Of-String termination mode.
EOSCharCode Specifies the End-Of-String terminator.

Configuring and Connecting to the Instrument

You need to create a VISA-GPIB object. In this example, an object is created using the ni
driver and the VISA resource string shown below.

v = visa('ni', 'GPIB0::2::INSTR');

Before you can perform a read or write operation, you must connect the VISA-GPIB
object to the instrument with the fopen function.

fopen(v);

If the object was successfully connected, its Status property is automatically configured
to open.

v.Status
ans =
 open

Writing Binary Data

You use the fwrite function to write binary data to the instrument. For example, the
following command will send a sine wave to the instrument. By default, the fwrite
function operates in a synchronous mode. This means that fwrite blocks the MATLAB
command line until one of the following occurs:

• All the data is written

 Reading and Writing Binary Data Using VISA

5-53

• A timeout occurs as specified by the Timeout property

By default the fwrite function writes binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fwrite.

Note When performing a write operation, you should think of the transmitted data in
terms of values rather than bytes. A value consists of one or more bytes. For example,
one uint32 value consists of four bytes.

Binary Write Properties

OutputBufferSize

The OutputBufferSize property specifies the maximum number of bytes that can be
written to the instrument at once. By default, OutputBufferSize is 512.

v.OutputBufferSize
ans =
 512

Configure the object's output buffer size to 3000. Note the OutputBufferSize can be
configured only when the object is not connected to the instrument.

fclose(v);
v.OutputBufferSize = 3000;
fopen(v);

Writing Int16 Binary Data

Now write a waveform as an int16 array.

fprintf(v, 'Data:Destination RefB');
fprintf(v, 'Data:Encdg SRPbinary');
fprintf(v, 'Data:Width 2');
fprintf(v, 'Data:Start 1');

t = (0:499) .* 8 * pi / 500;
data = round(sin(t) * 90 + 127);
fprintf(v, 'CURVE #3500');

5 Controlling Instruments Using VISA

5-54

Note that one int16 value consists of two bytes. Therefore, the following command will
write 1000 bytes.

fwrite(v, data, 'int16')

ValuesSent

The ValuesSent property indicates the total number of values written to the instrument
since the object was connected to the instrument.

v.ValuesSent
ans =
 576

Reading Binary Data

You use the fread function to read binary data from the instrument.

By default, the fread function reads data using the uchar precision and blocks the
MATLAB command line until one of the following occurs:

• A timeout occurs as specified by the Timeout property
• The input buffer is filled
• The specified number of values is read
• The EOI line is asserted
• The terminator is received as specified by the EOSCharCode property (if defined)

By default the fread function reads binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fread.

Note When performing a read operation, you should think of the received data in terms
of values rather than bytes. A value consists of one or more bytes. For example, one
uint32 value consists of four bytes.

Binary Read Properties

InputBufferSize

 Reading and Writing Binary Data Using VISA

5-55

The InputBufferSize property specifies the maximum number of bytes you can read
from the instrument. By default, InputBufferSize is 512.

v.InputBufferSize
ans =
 512

Configure the object's input buffer size to 5100. Note the InputBufferSize can be
configured only when the object is not connected to the instrument.

fclose(v);
v.InputBufferSize = 5100;
fopen(v);

Reading Int16 Binary Data

Now read the same waveform on channel 1 as an int16 array.

fprintf(v, 'Data:Source CH1');
fprintf(v, 'Data:Encdg SRIbinary');
fprintf(v, 'Data:Width 2');
fprintf(v, 'Data:Start 1');
fprintf(v, 'Curve?')

Note that one int16 value consists of two bytes. Therefore, the following command will
read 2400 bytes.

data = fread(v, 1200, 'int16');

ValuesReceived

The ValuesReceived property indicates the total number of values read from the
instrument.

v.ValuesReceived

ans =

 1200

Since we may not have read all of the values, clear the input buffer.

flushinput(v);

EOSMode and EOSCharCode

5 Controlling Instruments Using VISA

5-56

For VISA-GPIB, objects, the terminator is defined by setting the object's EOSMode
property to read and setting the object's EOSCharCode property to the ASCII code for the
character received. For example, if the EOSMode property is set to read and the
EOSCharCode property is set to 10, then one of the ways that the read terminates is
when the linefeed character is received.

Configure the GPIB object's terminator to the letter E.
set(v, 'EOSMode', 'read');
set(v, 'EOSCharCode', double('E'));

Now, read the channel 1's signal frequency.
fprintf(v, 'Measurement:Meas1:Source CH1')
fprintf(v, 'Measurement:Meas1:Type Freq')
fprintf(v, 'Measurement:Meas1:Value?')

Note: that the first read terminates due to the EOSCharCode being detected, while the
second read terminates due to the EOI line being asserted.
data = fread(v, 30);
char(data)'

Warning: The EOI line was asserted or the EOSCharCode was detected
% before SIZE values were available.

ans =

 9.9E

data = fread(v, 30);
char(data)'

Warning: The EOI line was asserted or the EOSCharCode was detected
% before SIZE values were available.

ans =

 37

Cleanup
If you are finished with the VISA-GPIB object, disconnect it from the instrument, remove
it from memory, and remove it from the workspace.

 Reading and Writing Binary Data Using VISA

5-57

fclose(v);
delete(v);
clear v

5 Controlling Instruments Using VISA

5-58

Asynchronous Read and Write Operations Using VISA

In this section...
“Functions and Properties” on page 5-59
“Synchronous Versus Asynchronous Operations” on page 5-60
“Configuring and Connecting to the Instrument” on page 5-60
“Reading Data Asynchronously” on page 5-61
“Asynchronous Read Properties” on page 5-61
“Using Callbacks During an Asynchronous Read” on page 5-62
“Writing Data Asynchronously” on page 5-63
“Cleanup” on page 5-63

This example explores asynchronous read and write operations using a VISA-GPIB
object. The instrument used was a Tektronix® TDS 2024 oscilloscope.

This tutorial explores asynchronous read and write operations for a VISA-GPIB-VXI
object. However, asynchronous read and write operations for VISA-GPIB, VISA-VXI,
VISA-GPIB-VXI, VISA-TCPIP, and VISA-USB objects are identical to each other.
Therefore, you can use the same commands. The only difference is the resource name
specified in the VISA constructor.

Asynchronous read and write operations for the VISA-serial object are identical to
asynchronous read and write operations for the serial port object. Therefore, to learn how
to perform asynchronous read and write operations for the VISA-serial object, you should
refer to the Serial Port Asynchronous Read/Write tutorial.

Asynchronous read and write operations are not supported for the VISA-RSIB object.

Functions and Properties

These functions are associated with reading and writing text asynchronously:
Function Purpose
fprintf Write text to a instrument.
readasync Asynchronously read bytes from an instrument.
stopasync Stop an asynchronous read or write operation.

 Asynchronous Read and Write Operations Using VISA

5-59

These properties are associated with reading and writing text asynchronously:
Property Purpose
BytesAvailable Indicates the number of bytes available in the input buffer.
TransferStatus Indicates what type of asynchronous operation is in progress.

Additionally, you can use all the callback properties during asynchronous read and write
operations.

Synchronous Versus Asynchronous Operations

The VISA object can operate in either synchronous or asynchronous mode. In
synchronous mode, the MATLAB command line is blocked until

• The read or write operation completes
• A timeout occurs as specified by the Timeout property

In asynchronous mode, control is immediately returned to the MATLAB command line.
Additionally, you can use callback properties and callback functions to perform tasks as
data is being written or read. For example, you can create a callback function that
notifies you when the read or write operation has finished.

Configuring and Connecting to the Instrument

You need to create a VISA-GPIB object. In this example, an object is created using the ni
driver and the VISA resource string shown below.

v = visa('ni', 'GPIB0::2::INSTR')

Before you can perform a read or write operation, you must connect the VISA-GPIB
object to the instrument with the fopen function.

fopen(v)

If the object was successfully connected, its Status property is automatically configured
to open.

v.Status
ans =
 open

5 Controlling Instruments Using VISA

5-60

Reading Data Asynchronously
The VISA-GPIB object's asynchronous read functionality is controlled with the
readasync function. Query the instrument for the channel 1 vertical scale:

fprintf(v, 'CH1:Scale?');

The readasync function can asynchronously read the data from the instrument. The
readasync function returns control to the MATLAB command prompt immediately.

readasync(v, 20);

The readasyn function without a size specified will assume size is given by the
difference between the InputBufferSize property value and the BytesAvailable
property value. In the above example, size is 20. The asynchronous read terminates when
one of the following occurs:

• The terminator is read as specified by the EOSCharCode property
• The specified number of bytes are stored in the input buffer
• A timeout occurs as specified by the Timeout property
• The EOI line has been asserted

An error event will be generated if readasync terminates due to a timeout.

Asynchronous Read Properties
Transfer Status

The TransferStatus property indicates what type of asynchronous operation is in
progress. For VISA-GPIB objects, TransferStatus can be configured as read, write,
or idle.

v.TransferStatus
ans =
 idle

While an asynchronous read is in progress, an error occurs if you execute another write
or asynchronous read operation. You can stop the asynchronous read operation with the
stopasync function. The data in the input buffer will remain after stopasync is called.
This allows you to bring the data that was read into the MATLAB workspace with one of
the synchronous read routines (fscanf, fgetl, fgets, or fread).

 Asynchronous Read and Write Operations Using VISA

5-61

BytesAvailable

If we now look at the BytesAvailable property, you see that 6 bytes were read.

v.BytesAvailable
ans =
 6

You can bring the data into the MATLAB workspace with the fscanf function.

data = fscanf(v, '%g')
data =
 1

Using Callbacks During an Asynchronous Read
Now, configure the VISA-GPIB object to notify you when a line feed has been read. The
BytesAvailableFcnMode property controls when the BytesAvailable event is
created. By default, the BytesAvailable event is created when the EOSCharCode
character is received. The BytesAvailable event can also be created after a certain
number of bytes have been read. Note that the BytesAvailableFcnMode property
cannot be configured while the object is connected to the instrument.

set(v, 'BytesAvailableFcn', {'dispcallback'});
set(v, 'EOSCharCode', 10);

The callback function dispcallback displays a message containing the type of the
event, the name of the object that caused the event to occur, and the time the event
occurred.

Now, query the instrument for the frequency of the signal. Once the linefeed has been
read from the instrument and placed in the input buffer, dispcallback will be executed
and a message will be displayed to the MATLAB command window indicating that a
BytesAvailable event occurred.

fprintf(v, 'CH2:Scale?');
readasync(v);

Allow time for a response. In a typical application this is where you could do other tasks.

pause(0.5);

A BytesAvailable event occurred for VISA-GPIB0-2 at 01-Jun-2005 15:08:34.

5 Controlling Instruments Using VISA

5-62

v.BytesAvailable

ans =

 6

data = fscanf(v, '%c', 6)

data =

 à (0

Note that the last value read is the line feed (10):

real(data)

ans =

 224 32 40 16 48 10

Writing Data Asynchronously

You can perform an asynchronous write with the fprintf or fwrite functions by
passing an 'async' flag as the last input argument.

While an asynchronous write is in progress, an error occurs if you execute a read or write
operation. You can stop an asynchronous write operation with the stopasync function.
The data remaining in the output buffer will be flushed.

Also configure the object to notify you when the write operation has completed by
defining an asynchronous write callback.

set(v, 'OutputEmptyFcn', {'dispcallback'});
fprintf(v, 'CH1:Scale?', 'async');

Cleanup

If you are finished with the VISA-GPIB object, disconnect it from the instrument, remove
it from memory, and remove it from the workspace.

 Asynchronous Read and Write Operations Using VISA

5-63

fclose(v);
delete(v);
clear v

5 Controlling Instruments Using VISA

5-64

Controlling Instruments Using the Serial
Port

This chapter describes specific issues related to controlling instruments that use the
serial port.

• “Serial Port Overview” on page 6-2
• “Serial Port Object” on page 6-15
• “Configuring Communication Settings” on page 6-19
• “Writing and Reading Data” on page 6-20
• “Events and Callbacks” on page 6-36
• “Using Control Pins” on page 6-41

6

Serial Port Overview

In this section...
“What Is Serial Communication?” on page 6-2
“Serial Port Interface Standard” on page 6-2
“Supported Platforms” on page 6-3
“Connecting Two Devices with a Serial Cable” on page 6-3
“Serial Port Signals and Pin Assignments” on page 6-4
“Serial Data Format” on page 6-8
“Finding Serial Port Information for Your Platform” on page 6-11

What Is Serial Communication?

Serial communication is the most common low-level protocol for communicating between
two or more devices. Normally, one device is a computer, while the other device can be a
modem, a printer, another computer, or a scientific instrument such as an oscilloscope or
a function generator.

As the name suggests, the serial port sends and receives bytes of information in a serial
fashion — one bit at a time. These bytes are transmitted using either a binary format or
a text (ASCII) format.

For many serial port applications, you can communicate with your instrument without
detailed knowledge of how the serial port works. Communication is established through a
serial port object, which you create in the MATLAB workspace.

If your application is straightforward, or if you are already familiar with the topics
mentioned above, you might want to begin with “Serial Port Object” on page 6-15. If you
want a high-level description of all the steps you are likely to take when communicating
with your instrument, refer to the Getting Started documentation that is linked to at the
top of the main Instrument Control Toolbox Doc Center page.

Serial Port Interface Standard

Over the years, several serial port interface standards for connecting computers to
peripheral devices have been developed. These standards include RS-232, RS-422, and

6 Controlling Instruments Using the Serial Port

6-2

RS-485 — all of which are supported by the serial port object. Of these, the most widely
used standard is RS-232, which stands for Recommended Standard number 232.

The current version of this standard is designated as TIA/EIA-232C, which is published
by the Telecommunications Industry Association. However, the term “RS-232” is still in
popular use, and is used in this guide when referring to a serial communication port that
follows the TIA/EIA-232 standard. RS-232 defines these serial port characteristics:

• The maximum bit transfer rate and cable length
• The names, electrical characteristics, and functions of signals
• The mechanical connections and pin assignments

Primary communication is accomplished using three pins: the Transmit Data pin, the
Receive Data pin, and the Ground pin. Other pins are available for data flow control, but
are not required.

Note In this guide, it is assumed you are using the RS-232 standard. Refer to your device
documentation to see which interface standard you can use.

Supported Platforms

The MATLAB serial port interface is supported on

• Linux® 64-bit
• macOS 64-bit
• Microsoft® Windows 64-bit

Connecting Two Devices with a Serial Cable

The RS-232 and RS-485 standard defines the two devices connected with a serial cable as
the Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE).
This terminology reflects the RS-232 origin as a standard for communication between a
computer terminal and a modem.

Throughout this guide, your computer is considered a DTE, while peripheral devices such
as modems and printers are considered DCEs. Note that many scientific instruments
function as DTEs.

 Serial Port Overview

6-3

Because RS-232 mainly involves connecting a DTE to a DCE, the pin assignments are
defined such that straight-through cabling is used, where pin 1 is connected to pin 1, pin
2 is connected to pin 2, and so on. A DTE to DCE serial connection using the transmit
data (TD) pin and the receive data (RD) pin is shown below. Refer to “Serial Port Signals
and Pin Assignments” on page 6-4 for more information about serial port pins.

If you connect two DTEs or two DCEs using a straight serial cable, then the TD pin on
each device is connected to the other, and the RD pin on each device is connected to the
other. Therefore, to connect two like devices, you must use a null modem cable. As shown
below, null modem cables cross the transmit and receive lines in the cable.

Note You can connect multiple RS-422 or RS-485 devices to a serial port. If you have an
RS-232/RS-485 adaptor, then you can use the serial port object with these devices.

Serial Port Signals and Pin Assignments

Serial ports consist of two signal types: data signals and control signals. To support these
signal types, as well as the signal ground, the RS-232 standard defines a 25-pin
connection. However, most PCs and UNIX® platforms use a 9-pin connection. In fact,
only three pins are required for serial port communications: one for receiving data, one
for transmitting data, and one for the signal ground.

The pin assignment scheme for a 9-pin male connector on a DTE is given below.

6 Controlling Instruments Using the Serial Port

6-4

The pins and signals associated with the 9-pin connector are described below. Refer to
the RS-232 or the RS-485 standard for a description of the signals and pin assignments
used for a 25-pin connector.
Serial Port Pin and Signal Assignments

Pin Label Signal Name Signal Type
1 CD Carrier Detect Control
2 RD Received Data Data
3 TD Transmitted Data Data
4 DTR Data Terminal Ready Control
5 GND Signal Ground Ground
6 DSR Data Set Ready Control
7 RTS Request to Send Control
8 CTS Clear to Send Control
9 RI Ring Indicator Control

The term “data set” is synonymous with “modem” or “device,” while the term “data
terminal” is synonymous with “computer.”

Note The serial port pin and signal assignments are with respect to the DTE. For
example, data is transmitted from the TD pin of the DTE to the RD pin of the DCE.

Signal States

Signals can be in either an active state or an inactive state. An active state corresponds to
the binary value 1, while an inactive state corresponds to the binary value 0. An active
signal state is often described as logic 1, on, true, or a mark. An inactive signal state is
often described as logic 0, off, false, or a space.

For data signals, the “on” state occurs when the received signal voltage is more negative
than -3 volts, while the “off” state occurs for voltages more positive than 3 volts. For

 Serial Port Overview

6-5

control signals, the “on” state occurs when the received signal voltage is more positive
than 3 volts, while the “off” state occurs for voltages more negative than -3 volts. The
voltage between -3 volts and +3 volts is considered a transition region, and the signal
state is undefined.

To bring the signal to the “on” state, the controlling device unasserts (or lowers) the value
for data pins and asserts (or raises) the value for control pins. Conversely, to bring the
signal to the “off” state, the controlling device asserts the value for data pins and
unasserts the value for control pins.

The “on” and “off” states for a data signal and for a control signal are shown below.

The Data Pins

Most serial port devices support full-duplex communication meaning that they can send
and receive data at the same time. Therefore, separate pins are used for transmitting
and receiving data. For these devices, the TD, RD, and GND pins are used. However,
some types of serial port devices support only one-way or half-duplex communications.
For these devices, only the TD and GND pins are used. In this guide, it is assumed that a
full-duplex serial port is connected to your device.

The TD pin carries data transmitted by a DTE to a DCE. The RD pin carries data that is
received by a DTE from a DCE.

The Control Pins

The control pins of a 9-pin serial port are used to determine the presence of connected
devices and control the flow of data. The control pins include

6 Controlling Instruments Using the Serial Port

6-6

• “The RTS and CTS Pins” on page 6-7
• “The DTR and DSR Pins” on page 6-7
• “The CD and RI Pins” on page 6-7

The RTS and CTS Pins

The RTS and CTS pins are used to signal whether the devices are ready to send or
receive data. This type of data flow control — called hardware handshaking — is used to
prevent data loss during transmission. When enabled for both the DTE and DCE,
hardware handshaking using RTS and CTS follows these steps:

1 The DTE asserts the RTS pin to instruct the DCE that it is ready to receive data.
2 The DCE asserts the CTS pin indicating that it is clear to send data over the TD pin.

If data can no longer be sent, the CTS pin is unasserted.
3 The data is transmitted to the DTE over the TD pin. If data can no longer be

accepted, the RTS pin is unasserted by the DTE and the data transmission is
stopped.

To enable hardware handshaking, refer to “Controlling the Flow of Data: Handshaking”
on page 6-44.

The DTR and DSR Pins

Many devices use the DSR and DTR pins to signal if they are connected and powered.
Signaling the presence of connected devices using DTR and DSR follows these steps:

1 The DTE asserts the DTR pin to request that the DCE connect to the communication
line.

2 The DCE asserts the DSR pin to indicate that it is connected.
3 DCE unasserts the DSR pin when it is disconnected from the communication line.

The DTR and DSR pins were originally designed to provide an alternative method of
hardware handshaking. However, the RTS and CTS pins are usually used in this way,
and not the DSR and DTR pins. However, you should refer to your device documentation
to determine its specific pin behavior.

The CD and RI Pins

The CD and RI pins are typically used to indicate the presence of certain signals during
modem-modem connections.

 Serial Port Overview

6-7

CD is used by a modem to signal that it has made a connection with another modem, or
has detected a carrier tone. CD is asserted when the DCE is receiving a signal of a
suitable frequency. CD is unasserted if the DCE is not receiving a suitable signal.

RI is used to indicate the presence of an audible ringing signal. RI is asserted when the
DCE is receiving a ringing signal. RI is unasserted when the DCE is not receiving a
ringing signal (for example, it's between rings).

Serial Data Format

The serial data format includes one start bit, between five and eight data bits, and one
stop bit. A parity bit and an additional stop bit might be included in the format as well.
The diagram below illustrates the serial data format.

The format for serial port data is often expressed using the following notation:

number of data bits - parity type - number of stop bits

For example, 8-N-1 is interpreted as eight data bits, no parity bit, and one stop bit, while
7-E-2 is interpreted as seven data bits, even parity, and two stop bits.

The data bits are often referred to as a character because these bits usually represent an
ASCII character. The remaining bits are called framing bits because they frame the data
bits.

Bytes Versus Values

The collection of bits that compose the serial data format is called a byte. At first, this
term might seem inaccurate because a byte is 8 bits and the serial data format can range
between 7 bits and 12 bits. However, when serial data is stored on your computer, the
framing bits are stripped away, and only the data bits are retained. Moreover, eight data
bits are always used regardless of the number of data bits specified for transmission,
with the unused bits assigned a value of 0.

When reading or writing data, you might need to specify a value, which can consist of one
or more bytes. For example, if you read one value from a device using the int32 format,

6 Controlling Instruments Using the Serial Port

6-8

then that value consists of four bytes. For more information about reading and writing
values, refer to “Writing and Reading Data” on page 6-20.

Synchronous and Asynchronous Communication

The RS-232 and the RS-485 standard support two types of communication protocols:
synchronous and asynchronous.

Using the synchronous protocol, all transmitted bits are synchronized to a common clock
signal. The two devices initially synchronize themselves to each other, and then
continually send characters to stay synchronized. Even when actual data is not really
being sent, a constant flow of bits allows each device to know where the other is at any
given time. That is, each bit that is sent is either actual data or an idle character.
Synchronous communications allows faster data transfer rates than asynchronous
methods, because additional bits to mark the beginning and end of each data byte are not
required.

Using the asynchronous protocol, each device uses its own internal clock resulting in
bytes that are transferred at arbitrary times. So, instead of using time as a way to
synchronize the bits, the data format is used.

In particular, the data transmission is synchronized using the start bit of the word, while
one or more stop bits indicate the end of the word. The requirement to send these
additional bits causes asynchronous communications to be slightly slower than
synchronous. However, it has the advantage that the processor does not have to deal
with the additional idle characters. Most serial ports operate asynchronously.

Note When used in this guide, the terms “synchronous” and “asynchronous” refer to
whether read or write operations block access to the MATLAB Command Window.

How Are the Bits Transmitted?

By definition, serial data is transmitted one bit at a time. The order in which the bits are
transmitted follows these steps:

1 The start bit is transmitted with a value of 0.
2 The data bits are transmitted. The first data bit corresponds to the least significant

bit (LSB), while the last data bit corresponds to the most significant bit (MSB).
3 The parity bit (if defined) is transmitted.
4 One or two stop bits are transmitted, each with a value of 1.

 Serial Port Overview

6-9

The number of bits transferred per second is given by the baud rate. The transferred bits
include the start bit, the data bits, the parity bit (if defined), and the stop bits.

Start and Stop Bits

As described in “Synchronous and Asynchronous Communication” on page 6-9, most
serial ports operate asynchronously. This means that the transmitted byte must be
identified by start and stop bits. The start bit indicates when the data byte is about to
begin and the stop bit(s) indicates when the data byte has been transferred. The process
of identifying bytes with the serial data format follows these steps:

1 When a serial port pin is idle (not transmitting data), then it is in an “on” state.
2 When data is about to be transmitted, the serial port pin switches to an “off” state

due to the start bit.
3 The serial port pin switches back to an “on” state due to the stop bit(s). This

indicates the end of the byte.

Data Bits

The data bits transferred through a serial port might represent device commands, sensor
readings, error messages, and so on. The data can be transferred as either binary data or
as text (ASCII) data.

Most serial ports use between five and eight data bits. Binary data is typically
transmitted as eight bits. Text-based data is transmitted as either seven bits or eight
bits. If the data is based on the ASCII character set, then a minimum of seven bits is
required because there are 27 or 128 distinct characters. If an eighth bit is used, it must
have a value of 0. If the data is based on the extended ASCII character set, then eight
bits must be used because there are 28 or 256 distinct characters.

The Parity Bit

The parity bit provides simple error (parity) checking for the transmitted data. The types
of parity checking are given below.

6 Controlling Instruments Using the Serial Port

6-10

Parity Types

Parity Type Description
Even The data bits plus the parity bit produce an even number of 1s.
Mark The parity bit is always 1.
Odd The data bits plus the parity bit produce an odd number of 1s.
Space The parity bit is always 0.

Mark and space parity checking are seldom used because they offer minimal error
detection. You might choose not to use parity checking at all.

The parity checking process follows these steps:

1 The transmitting device sets the parity bit to 0 or to 1 depending on the data bit
values and the type of parity checking selected.

2 The receiving device checks if the parity bit is consistent with the transmitted data.
If it is, then the data bits are accepted. If it is not, then an error is returned.

Note Parity checking can detect only 1 bit errors. Multiple-bit errors can appear as valid
data.

For example, suppose the data bits 01110001 are transmitted to your computer. If even
parity is selected, then the parity bit is set to 0 by the transmitting device to produce an
even number of 1s. If odd parity is selected, then the parity bit is set to 1 by the
transmitting device to produce an odd number of 1s.

Finding Serial Port Information for Your Platform
This section describes how to find serial port information using the resources provided by
Windows and UNIX platforms.

Note Your operating system provides default values for all serial port settings. However,
these settings are overridden by your MATLAB code, and will have no effect on your
serial port application.

You can also use the instrhwinfo function to return the available serial ports
programmatically.

 Serial Port Overview

6-11

Use the seriallist Function to Find Available Ports

The seriallist function returns a list of all serial ports on a system. The list includes
virtual serial ports provided by USB-to-serial devices and Bluetooth Serial Port Profile
devices. This provides a list of the serial ports that you have access to on your computer
and could use for serial port communication. For example:

seriallist

ans =

 1×2 string array

 "COM1" "COM3"

Note On Linux systems, the seriallist function does not show ports that are in use.
On Windows and macOS systems, it shows both available and in-use ports. But on Linux
it shows only available ports.

Windows Platform

You can access serial port information through the System Properties dialog box. To
access this in Window XP,

1 Right-click My Computer on the desktop, and select Properties.
2 In the System Properties dialog box, click the Hardware tab.
3 Click Device Manager.
4 In the Device Manager dialog box, expand the Ports node.
5 Double-click the Communications Port (COM1) node.
6 Select the Port Settings tab.

The resulting Ports dialog box is shown below.

6 Controlling Instruments Using the Serial Port

6-12

UNIX Platform

To find serial port information for UNIX platforms, you need to know the serial port
names. These names might vary between different operating systems.

On Linux, serial port devices are typically named ttyS0, ttyS1, and so on. You can use
the setserial command to display or configure serial port information. For example, to
display which serial ports are available,

setserial -bg /dev/ttyS*

/dev/ttyS0 at 0x03f8 (irq = 4) is a 16550A
/dev/ttyS1 at 0x02f8 (irq = 3) is a 16550A

To display detailed information about ttyS0,

setserial -ag /dev/ttyS0

/dev/ttyS0, Line 0, UART: 16550A, Port: 0x03f8, IRQ: 4
 Baud_base: 115200, close_delay: 50, divisor: 0
 closing_wait: 3000, closing_wait2: infinte
 Flags: spd_normal skip_test session_lockout

 Serial Port Overview

6-13

Note If the setserial -ag command does not work, make sure that you have read and
write permission for the port.

For all supported UNIX platforms, including macOS, you can use the stty command to
display or configure serial port information. For example, to display serial port properties
for ttyS0, type:

stty -a < /dev/ttyS0

To configure the baud rate to 4800 bits per second, type:

stty speed 4800 < /dev/ttyS0 > /dev/ttyS0

Note This is an example of setting tty parameters, not the baud rate. To set baud rate
using MATLAB serial interface refer to “Configuring Communication Settings” on page
6-19.

6 Controlling Instruments Using the Serial Port

6-14

Serial Port Object
In this section...
“Creating a Serial Port Object” on page 6-15
“Serial Port Object Display” on page 6-17

Creating a Serial Port Object
You create a serial port object with the serial function. serial requires the name of
the serial port connected to your device as an input argument. As described in
“Configuring Properties During Object Creation” on page 3-3, you can also configure
property values during object creation.

Each serial port object is associated with one serial port. For example, to create a serial
port object associated with a serial port enter

s = serial('port');

This creates a serial port object associated with the serial port specified by 'port'. If
'port' does not exist, or if it is in use, you will not be able to connect the serial port
object to the device. 'port' object name will depend upon the platform that the serial
port is on.

 instrhwinfo('serial')

provides a list of available serial ports.

You can also use the seriallist function to return a list of all serial ports on a system.
The list includes virtual serial ports provided by USB-to-serial devices and Bluetooth
Serial Port Profile devices. This provides a list of the serial ports that you have access to
on your computer and could use for serial port communication. For example:

seriallist

ans =

 1×2 string array

 "COM1" "COM3"

This table shows an example of serial constructors on different platforms:

 Serial Port Object

6-15

Platform Serial Constructor
Linux 64-bit serial('/dev/ttyS0');
macOS 64-bit serial('/dev/tty.KeySerial1');
Microsoft Windows 64-bit serial('com1');

The serial port object s now exists in the MATLAB workspace. You can display the class
of s with the whos command.

whos s
 Name Size Bytes Class

 s 1x1 512 serial object

Grand total is 11 elements using 512 bytes

Note The first time you try to access a serial port in MATLAB using the s =
serial('com1') call, make sure that the port is free and is not already open in any
other application. If the port is open in another application, MATLAB cannot access it.
Once you have accessed in MATLAB, you can open the same port in other applications
and MATLAB will continue to use it along with any other application that has it open as
well.

Once the serial port object is created, the following properties are automatically assigned
values. These general purpose properties provide information about the serial port object
based on the object type and the serial port.
Serial Port Descriptive Properties

Property Name Description
Name Specify a descriptive name for the serial port object.
Port Indicate the platform-specific serial port name.
Type Indicate the object type.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

6 Controlling Instruments Using the Serial Port

6-16

You can display the values of these properties for s
s.Name

 ans =
 'Serial-COM1'

s.Port

 ans =
 'COM1'

s.Type

 ans =
 'serial'

Caution The serial port is not locked by the MATLAB application, so other applications
or other instances of the MATLAB Command Window can access the same serial port.
This might result in a conflict, with unpredictable results.

Serial Port Object Display

The serial port object provides a convenient display that summarizes important
configuration and state information. You can invoke the display summary these three
ways:

• Type the serial port object variable name at the command line.
• Exclude the semicolon when creating a serial port object.
• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the serial port object s on a Windows machine is given here.

s = serial('COM1')

Serial Port Object : Serial-COM1

Communication Settings
 Port: COM1

 Serial Port Object

6-17

 BaudRate: 9600
 Terminator: 'LF'

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

6 Controlling Instruments Using the Serial Port

6-18

Configuring Communication Settings
Before you can write or read data, both the serial port object and the instrument must
have identical communication settings. Configuring serial port communications involves
specifying values for properties that control the baud rate and the “Serial Data Format”
on page 6-8. These properties are as follows.
Serial Port Communication Properties

Property Name Description
BaudRate Specify the rate at which bits are transmitted.
DataBits Specify the number of data bits to transmit.
Parity Specify the type of parity checking.
StopBits Specify the number of bits used to indicate the end of a byte.
Terminator Specify the terminator character.

Caution If the serial port object and the instrument communication settings are not
identical, you cannot successfully read or write data.

Refer to your instrument documentation for an explanation of its supported
communication settings.

You can display the communication property values for the serial port object s created in
“Serial Port Object” on page 6-15 .

get(s,{'BaudRate','DataBits','Parity','StopBits','Terminator'})

ans =
[9600] [8] 'none' [1] 'LF'

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

 Configuring Communication Settings

6-19

Writing and Reading Data
In this section...
“Asynchronous Write and Read Operations” on page 6-20
“Rules for Completing Write and Read Operations” on page 6-26
“Writing and Reading Text Data” on page 6-27
“Writing and Reading Binary Data” on page 6-31

Asynchronous Write and Read Operations

These functions are associated with reading and writing text asynchronously:
Function Purpose
fprintf Write text to an instrument.
readasync Asynchronously read bytes from an instrument.
stopasync Stop an asynchronous read or write operation.

These properties are associated with reading and writing text asynchronously:
Property Purpose
BytesAvailable Indicates the number of bytes available in the input buffer.
TransferStatus Indicates what type of asynchronous operation is in progress.
ReadAsyncMode Indicates whether data is read continuously in the background or

whether you must call the readasync function to read data
asynchronously.

Additionally, you can use all the callback properties during asynchronous read and write
operations.

Asynchronous write and read operations do not block access to the MATLAB Command
Window. Additionally, while an asynchronous operation is in progress you can

• Execute a read (write) operation while an asynchronous write (read) operation is in
progress. This is because serial ports have separate pins for reading and writing.

• Make use of all supported callback properties. Refer to “Events and Callbacks” on
page 6-36 for more information about the callback properties supported by serial
port objects.

6 Controlling Instruments Using the Serial Port

6-20

The process of writing data asynchronously is given in “Synchronous Versus
Asynchronous Write Operations” on page 3-18.

For a general overview about writing and reading data, as well as a list of all associated
functions and properties, refer to “Communicating with Your Instrument” on page 2-8.

Asynchronous Read Operations

For serial port objects, you specify whether read operations are synchronous or
asynchronous with the ReadAsyncMode property. You can configure ReadAsyncMode to
continuous or manual.

If ReadAsyncMode is continuous (the default value), the serial port object continuously
queries the instrument to determine if data is available to be read. If data is available, it
is asynchronously stored in the input buffer. To transfer the data from the input buffer to
the MATLAB workspace, you use one of the synchronous (blocking) read functions such
as fgetl, fgets, fscanf, or fread. If data is available in the input buffer, these
functions will return quickly.

Note This example is Windows specific.

s = serial('COM1');
fopen(s)
s.ReadAsyncMode = 'continuous';
fprintf(s,'*IDN?')
s.BytesAvailable
ans =
 56
out = fscanf(s);

If ReadAsyncMode is manual, the serial port object does not continuously query the
instrument to determine if data is available to be read. To read data asynchronously, you
use the readasync function. You then use one of the synchronous read functions to
transfer data from the input buffer to the MATLAB workspace.

s.ReadAsyncMode = 'manual';
fprintf(s,'*IDN?')
s.BytesAvailable
ans =
 0
readasync(s)

 Writing and Reading Data

6-21

s.BytesAvailable
ans =
 56
out = fscanf(s);

Writing and Reading Asynchronous Data

This example explores asynchronous read and write operations using a serial port object.
The instrument used was a Tektronix(R) TDS 210 oscilloscope.

To begin, create a serial port object associated with the COM1 port. The oscilloscope is
configured to a baud rate of 9600, 1 stop bit, a line feed terminator, no parity, and no flow
control.

s = serial('COM1');
s.Baudrate=9600;
s.StopBits=1;
s.Terminator='LF';
s.Parity='none';
s.FlowControl='none';

Before you can perform a read or write operation, you must connect the serial port object
to the instrument with the fopen function.

fopen(s);

If the object was successfully connected, its Status property is automatically configured
to open.

s.Status

ans =
 open

To begin, read data continuously.

s.ReadAsyncMode='continuous';

Now, query the instrument for the peak-to-peak value of the signal on channel 1.

fprintf(s, 'Measurement:Meas1:Source CH1');
fprintf(s, 'Measurement:Meas1:Type Pk2Pk');
fprintf(s, 'Measurement:Meas1:Value?');

Allow time for a response. In a typical application this is where you could do other tasks.

6 Controlling Instruments Using the Serial Port

6-22

pause(0.5);

Since the ReadAsyncMode property is set to continuous, the object is continuously
asking the instrument if any data is available. Once the last fprintf function
completes, the instrument begins sending data; the data is read from the instrument and
is stored in the input buffer.

s.BytesAvailable

ans =
 14

You can bring the data from the object's input buffer into the MATLAB workspace with
fscanf.

data = fscanf(s)

data =
 5.99999987E-2

Next, read the data manually.

s.ReadAsyncMode='manual';

Now, query the instrument for the frequency of the signal on channel 1.

fprintf(s, 'Measurement:Meas2:Source CH1');
fprintf(s, 'Measurement:Meas2:Type Freq');
fprintf(s, 'Measurement:Meas2:Value?');

Allow time for a response. In a typical application this is where you could do other tasks.

pause(0.5);

Once the last fprintf function completes, the instrument begins sending data.
However, since ReadAsyncMode is set to manual, the object is not reading the data being
sent from the instrument. Therefore, no data is being read and placed in the input buffer.

s.BytesAvailable

ans =
 0

Read the data.

readasync(s);

 Writing and Reading Data

6-23

Allow time for a response.

pause(0.5);

It is important to remember that when the serial port object is in manual mode (the
ReadAsyncMode property is configured to manual), data that is sent from the
instrument to the computer is not automatically stored in the input buffer of the
connected serial port object. Data is not stored until readasync or one of the blocking
read functions is called.

Manual mode should be used when a stream of data is being sent from your instrument
and you only want to capture portions of the data.

Defining an Asynchronous Read Callback

Continuing the example from the previous section, configure the serial object to notify
you when a terminator has been read.

s.ReadAsyncMode='continuous';
s.BytesAvailableFcn={'dispcallback'};

Note, the default value for the BytesAvailableFcnMode property indicates that the
callback function defined by the BytesAvailableFcn property will be executed when
the terminator has been read.

s.BytesAvailableFcnMode

ans =
 terminator

The dispcallback function displays a message containing the type of the event, the
name of the object that caused the event to occur, and the time the event occurred.

 callbackTime = datestr(datenum(event.Data.AbsTime));
 fprintf(['A ' event.Type ' event occurred for ' obj.Name ' at '
 callbackTime '.\n']);

Query the instrument for the period of the signal on channel 1. Once the terminator is
read from the instrument and placed in the input buffer, dispcallback is executed and
a message is posted to the MATLAB command window indicating that a
BytesAvailable event occurred.

6 Controlling Instruments Using the Serial Port

6-24

fprintf(s, 'Measurement:Meas3:Source CH1')
fprintf(s, 'Measurement:Meas3:Type Period')
fprintf(s, 'Measurement:Meas3:Value?')

Allow time for a response.

pause(0.5);

A BytesAvailable event occurred for Serial-COM1 at <date and time>.

s.BytesAvailable

ans =
 7

data = fscanf(s, '%c', 10)

data =

 2.0E-6

Note that the last value read is the line feed (10).

Now suppose that halfway through the asynchronous read operation, you realize that the
signal displayed on the oscilloscope was incorrect. Rather than waiting for the
asynchronous operation to complete, you can use the stopasync function to stop the
asynchronous read. Note that if an asynchronous write was in progress, the
asynchronous write operation would also be stopped.

s.BytesAvailableFcn='';
fprintf(s, 'Curve?');
pause(0.25);
S.BytesAvailable

ans =
 126

stopasync(s);
s.BytesAvailable

ans =
 262

 Writing and Reading Data

6-25

The data that has been read from the instrument remains in the input buffer. You can
use one of the synchronous read functions to bring this data into the MATLAB
workspace. However, since this data represents the wrong signal, the flushinput
function is called to remove all data from the input buffer.

flushinput(s);
s.BytesAvailable

ans =
 0

You can perform an asynchronous write with the fprintf or fwrite functions by
passing 'async' as the last input argument.

fprintf(s, 'Measurement:Meas3:Value?', 'async')

If you are finished with the serial port object, disconnect it from the instrument, remove
it from memory, and remove it from the workspace.

fclose(s);
delete(s);
clear s

Rules for Completing Write and Read Operations

The rules for completing synchronous and asynchronous read and write operations are
described below.

Completing Write Operations

A write operation using fprintf or fwrite completes when one of these conditions is
satisfied:

• The specified data is written.
• The time specified by the Timeout property passes.

In addition to these rules, you can stop an asynchronous write operation at any time with
the stopasync function.

A text command is processed by the instrument only when it receives the required
terminator. For serial port objects, each occurrence of \n in the ASCII command is

6 Controlling Instruments Using the Serial Port

6-26

replaced with the Terminator property value. Because the default format for fprintf
is %s\n, all commands written to the instrument will end with the Terminator value.
The default value of Terminator is the line feed character. The terminator required by
your instrument will be described in its documentation.

Completing Read Operations

A read operation with fgetl, fgets, fscanf, or readasync completes when one of
these conditions is satisfied:

• The terminator specified by the Terminator property is read.
• The time specified by the Timeout property passes.
• The input buffer is filled.
• The specified number of values is read (fscanf and readasync only).

A read operation with fread completes when one of these conditions is satisfied:

• The time specified by the Timeout property passes.
• The specified number of values is read.

Note Set the terminator property to '' (null), if appropriate, to ensure efficient
throughput of binary data.

In addition to these rules, you can stop an asynchronous read operation at any time with
the stopasync function.

Writing and Reading Text Data

This example illustrates how to communicate with a serial port instrument by writing
and reading text data.

The instrument is a Tektronix TDS 210 two-channel oscilloscope connected to the serial
port COM1. Therefore, many of the commands given below are specific to this
instrument. A sine wave is input into channel 2 of the oscilloscope, and your job is to
measure the peak-to-peak voltage of the input signal.

These functions are used when reading and writing text:

 Writing and Reading Data

6-27

Function Purpose
fprintf Write text to an instrument.
fscanf Read data from an instrument and format as text.

These properties are associated with reading and writing text:
Property Purpose
ValuesReceived Specifies the total number of values read from the instrument.
ValuesSent Specifies the total number of values sent to the instrument.
InputBufferSize Specifies the total number of bytes that can be queued in the

input buffer at one time.
OutputBufferSize Specifies the total number of bytes that can be queued in the

output buffer at one time.
Terminator Character used to terminate commands sent to the instrument.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Note This example is Windows specific.

1 Create a serial port object — Create the serial port object s associated with serial
port COM1.
s = serial('COM1');

2 Connect to the instrument — Connect s to the oscilloscope. Because the default
value for the ReadAsyncMode property is continuous, data is asynchronously
returned to the input buffer as soon as it is available from the instrument.
fopen(s)

3 Write and read data — Write the *IDN? command to the instrument using
fprintf, and then read back the result of the command using fscanf.

fprintf(s,'*IDN?')
s.BytesAvailable
ans =

6 Controlling Instruments Using the Serial Port

6-28

 56
idn = fscanf(s)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

You need to determine the measurement source. Possible measurement sources
include channel 1 and channel 2 of the oscilloscope.
fprintf(s,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(s)
source =
CH1

The scope is configured to return a measurement from channel 1. Because the input
signal is connected to channel 2, you must configure the instrument to return a
measurement from this channel.
fprintf(s,'MEASUREMENT:IMMED:SOURCE CH2')
fprintf(s,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(s)
source =
CH2

You can now configure the scope to return the peak-to-peak voltage, and then
request the value of this measurement.
fprintf(s,'MEASUREMENT:MEAS1:TYPE PK2PK')
fprintf(s,'MEASUREMENT:MEAS1:VALUE?')

Transfer data from the input buffer to the MATLAB workspace using fscanf.

ptop = fscanf(s)
ptop =
2.0199999809E0

4 Disconnect and clean up — When you no longer need s, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.
fclose(s)
delete(s)
clear s

Usage Notes for Writing ASCII Data

By default, the fprintf function operates in a synchronous mode. This means that
fprintf blocks the MATLAB command line until one of the following occurs:

 Writing and Reading Data

6-29

• All the data is written
• A timeout occurs as specified by the Timeout property

By default the fprintf function writes ASCII data using the %s\n format. All
occurrences of \n in the command being written to the instrument are replaced with the
Terminator property value. When using the default format, %s\n, all commands
written to the instrument will end with the Terminator character.

For the previous command, the linefeed (LF) is sent after 'Hello World 123' is
written to the instrument, thereby indicating the end of the command.

You can also specify the format of the command written by providing a third input
argument to fprintf. The accepted format conversion characters include: d, i, o, u, x, X,
f, e, E, g, G, c, and s.

ASCII Write Properties

The OutputBufferSize property specifies the maximum number of bytes that can be
written to the instrument at once. By default, OutputBufferSize is 512.

s.OutputBufferSize

ans =
 512

The ValuesSent property indicates the total number of values written to the instrument
since the object was connected to the instrument.

s.ValuesSent

ans =
 40

Usage Notes for Reading ASCII Data

By default, the fscanf function reads data using the '%c' format and blocks the
MATLAB command line until one of the following occurs:

• The terminator is received as specified by the Terminator property
• A timeout occurs as specified by the Timeout property
• The input buffer is filled

6 Controlling Instruments Using the Serial Port

6-30

• The specified number of values is read

You can also specify the format of the data read by providing a second input argument to
fscanf. The accepted format conversion characters include: d, i, o, u, x, X, f, e, E, g, G, c,
and s.

ASCII Read Properties

The InputBufferSize property specifies the maximum number of bytes you can read
from the instrument. By default, InputBufferSize is 512.

s.InputBufferSize

ans =
 512

The ValuesReceived property indicates the total number of values read from the
instrument, including the terminator.

s.ValuesReceived

ans =
 6

Writing and Reading Binary Data

This example explores binary read and write operations with a serial port object. The
instrument used was a Tektronix® TDS 210 oscilloscope.

Functions and Properties

These functions are used when reading and writing binary data:
Function Purpose
fread Read binary data from the instrument.
fwrite Write binary data to the instrument.

These properties are associated with reading and writing binary data:
Property Purpose
ValuesReceived Specifies the total number of values read from the instrument.
ValuesSent Specifies the total number of values sent to the instrument.

 Writing and Reading Data

6-31

Property Purpose
InputBufferSize Specifies the total number of bytes that can be queued in the

input buffer at one time.
OutputBufferSize Specifies the total number of bytes that can be queued in the

output buffer at one time.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Configuring and Connecting to the Serial Object

You need to create a serial object. In this example, create a serial port object associated
with the COM1 port.

s = serial('COM1');

Before you can perform a read or write operation, you must connect the serial port object
to the instrument with the fopen function.

fopen(s)

If the object was successfully connected, its Status property is automatically configured
to open.

s.Status

ans =
 open

Writing Binary Data

You use the fwrite function to write binary data to the instrument. By default, the
fwrite function operates in a synchronous mode. This means that fwrite blocks the
MATLAB command line until one of the following occurs:

• All the data is written
• A timeout occurs as specified by the Timeout property

6 Controlling Instruments Using the Serial Port

6-32

By default the fwrite function writes binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fwrite.

Note When performing a write operation, you should think of the transmitted data in
terms of values rather than bytes. A value consists of one or more bytes. For example,
one uint32 value consists of four bytes.

Binary Write Properties

The OutputBufferSize property specifies the maximum number of bytes that can be
written to the instrument at once. By default, OutputBufferSize is 512.

s.OutputBufferSize

ans =
 512

If the command specified in fwrite contains more than 512 bytes, an error is returned
and no data is written to the instrument.

Configure the object's output buffer size to 3000. Note, the OutputBufferSize can be
configured only when the object is not connected to the instrument.

fclose(s);
s.OutputBufferSize = 3000;
fopen(s);

The ValuesSent property indicates the total number of values written to the instrument
since the object was connected to the instrument.

s.ValuesSent

ans =
 581

Writing Int16 Binary Data

Write a waveform as an int16 array.

fwrite(s, 'Data:Destination RefB');
fwrite(s, 'Data:Encdg SRPbinary');

 Writing and Reading Data

6-33

fwrite(s, 'Data:Width 2');
fwrite(s, 'Data:Start 1');

t = (0:499) .* 8 * pi / 500;
data = round(sin(t) * 90 + 127);
fwrite(s, 'CURVE #3500');

Note that one int16 value consists of two bytes. Therefore, the following command will
write 1000 bytes.

fwrite(s, data, 'int16')

Reading Binary Data

You use the fread function to read binary data from the instrument.

The fread function blocks the MATLAB command line until one of the following occurs:

• A timeout occurs as specified by the Timeout property
• The specified number of values is read
• The input buffer is filled

By default the fread function reads binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fread.

Note When performing a read operation, you should think of the received data in terms
of values rather than bytes. A value consists of one or more bytes. For example, one
uint32 value consists of four bytes.

Binary Read Properties

The InputBufferSize property specifies the maximum number of bytes that can be
read from the instrument at once. By default, InputBufferSize is 512.

s.InputBufferSize

ans =
 512

6 Controlling Instruments Using the Serial Port

6-34

The ValuesReceived property indicates the total number of values read from the
instrument.

s.ValuesReceived

ans =
 256

Reading int16 Binary Data

Read the same waveform on channel 1 as an int16 array.

fread(s, 'Data:Source CH1');
fread(s, 'Data:Encdg SRPbinary');
fread(s, 'Data:Width 2');
fread(s, 'Data:Start 1');
fread(s, 'Data:Stop 2500');
fread(s, 'Curve?')

Note that one int16 value consists of two bytes. Therefore, the following command will
read 512 bytes.

data = fread(s, 256, 'int16'):

Cleanup

If you are finished with the serial port object, disconnect it from the instrument, remove
it from memory, and remove it from the workspace.

fclose(s)
delete(s)
clear s

 Writing and Reading Data

6-35

Events and Callbacks
In this section...
“Event Types and Callback Properties” on page 6-36
“Responding To Event Information” on page 6-37
“Using Events and Callbacks” on page 6-39

Event Types and Callback Properties

The event types and associated callback properties supported by serial port objects are
listed below.
Serial Port Event Types and Callback Properties

Event Type Associated Properties
Break interrupt BreakInterruptFcn
Bytes available BytesAvailableFcn

BytesAvailableFcnCount
BytesAvailableFcnMode

Error ErrorFcn
Output empty OutputEmptyFcn
Pin status PinStatusFcn
Timer TimerFcn

TimerPeriod

The break-interrupt and pin-status events are described below. For a description of the
other event types, refer to “Event Types and Callback Properties” on page 4-30.

Note You cannot use ASCII values larger than 127 characters with fgetl, fgets, or
BytesAvailableFnc. The functions are limited to 127 binary characters.

6 Controlling Instruments Using the Serial Port

6-36

Break-Interrupt Event

A break-interrupt event is generated immediately after a break interrupt is generated by
the serial port. The serial port generates a break interrupt when the received data has
been in an inactive state longer than the transmission time for one character.

This event executes the callback function specified for the BreakInterruptFcn
property. It can be generated for both synchronous and asynchronous read and write
operations.

Pin-Status Event

A pin-status event is generated immediately after the state (pin value) changes for the
CD, CTS, DSR, or RI pins. Refer to “Serial Port Signals and Pin Assignments” on page 6-
4 for a description of these pins.

This event executes the callback function specified for the PinStatusFcn property. It
can be generated for both synchronous and asynchronous read and write operations.

Responding To Event Information

You can respond to event information in a callback function or in a record file. Event
information stored in a callback function uses two fields: Type and Data. The Type field
contains the event type, while the Data field contains event-specific information. As
described in “Creating and Executing Callback Functions” on page 4-32, these two fields
are associated with a structure that you define in the callback function header. Refer to
“Debugging: Recording Information to Disk” on page 17-5 to learn about storing event
information in a record file.

The event types and the values for the Type and Data fields are given below.

 Events and Callbacks

6-37

Serial Port Event Information

Event Type Field Field Value
Break interrupt Type BreakInterrupt

Data.AbsTime day-month-year
hour:minute:second

Bytes available Type BytesAvailable
Data.AbsTime day-month-year

hour:minute:second
Error Type Error

Data.AbsTime day-month-year
hour:minute:second

Data.Message An error string
Output empty Type OutputEmpty

Data.AbsTime day-month-year
hour:minute:second

Pin status Type PinStatus
Data.AbsTime day-month-year

hour:minute:second
Data.Pin CarrierDetect,

ClearToSend,
DataSetReady, or
RingIndicator

Data.PinValue on or off
Timer Type Timer

Data.AbsTime day-month-year
hour:minute:second

The Data field values are as follows.
Field Name Value
AbsTime AbsTime is defined for all events, and indicates the absolute time

the event occurred. The absolute time is returned using the
MATLAB Command Windowclock format.

6 Controlling Instruments Using the Serial Port

6-38

Field Name Value
Pin Pin is used by the pin status event to indicate if the CD, CTS, DSR,

or RI pins changed state. Refer to “Serial Port Signals and Pin
Assignments” on page 6-4 for a description of these pins.

PinValue PinValue is used by the pin status event to indicate the state of
the CD, CTS, DSR, or RI pins. Possible values are on or off.

Message Message is used by the error event to store the descriptive message
that is generated when an error occurs.

Using Events and Callbacks

This example uses the callback function instrcallback to display event-related
information to the command line when a bytes-available event or an output-empty event
occurs:

Note This example is Windows specific.

1 Create an instrument object — Create the serial port object s associated with
serial port COM1.

s = serial('COM1');
2 Configure properties — Configure s to execute the callback function

instrcallback when a bytes-available event or an output-empty event occurs.

s.BytesAvailableFcnMode = 'terminator';
s.BytesAvailableFcn = @instrcallback;
s.OutputEmptyFcn = @instrcallback;

3 Connect to the instrument — Connect s to the Tektronix TDS 210 oscilloscope.
Because the default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffer as soon as it is available from the
instrument.

fopen(s)
4 Write and read data — Write the RS232? command asynchronously to the

oscilloscope. This command queries the RS-232 settings and returns the baud rate,
the software flow control setting, the hardware flow control setting, the parity type,
and the terminator.

 Events and Callbacks

6-39

fprintf(s,'RS232?','async')

instrcallback is called after the RS232? command is sent, and when the
terminator is read. The resulting displays are shown below.

OutputEmpty event occurred at 17:37:21 for the object:
Serial-COM1.

BytesAvailable event occurred at 17:37:21 for the object:
Serial-COM1.

5 Read the data from the input buffer.

out = fscanf(s)

out =
9600;0;0;NONE;LF

6 Disconnect and clean up — When you no longer need s, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(s)
delete(s)
clear s

For a general overview of events and callbacks, including how to create and execute
callback functions, refer to “Events and Callbacks” on page 4-29.

Note You cannot use ASCII values larger than 127 characters with fgetl, fgets, or
BytesAvailableFnc. The functions are limited to 127 binary characters.

6 Controlling Instruments Using the Serial Port

6-40

Using Control Pins
In this section...
“Control Pins” on page 6-41
“Signaling the Presence of Connected Devices” on page 6-41
“Controlling the Flow of Data: Handshaking” on page 6-44

Control Pins

As described in “Serial Port Signals and Pin Assignments” on page 6-4, 9-pin serial ports
include six control pins. The properties associated with the serial port control pins are as
follows:
Serial Port Control Pin Properties

Property Name Description
DataTerminalReady Specify the state of the DTR pin.
FlowControl Specify the data flow control method to use.
PinStatus Indicate the state of the CD, CTS, DSR, and RI pins.
RequestToSend Specify the state of the RTS pin.

Signaling the Presence of Connected Devices

DTEs and DCEs often use the CD, DSR, RI, and DTR pins to indicate whether a
connection is established between serial port devices. Once the connection is established,
you can begin to write or read data.

You can monitor the state of the CD, DSR, and RI pins with the PinStatus property.
You can specify or monitor the state of the DTR pin with the DataTerminalReady
property.

The following example illustrates how these pins are used when two modems are
connected to each other.

Connecting Two Modems

This example (shown on a Windows machine) connects two modems to each other via the
same computer, and illustrates how you can monitor the communication status for the

 Using Control Pins

6-41

computer-modem connections, and for the modem-modem connection. The first modem is
connected to COM1, while the second modem is connected to COM2:

1 Create the instrument objects — After the modems are powered on, the serial
port object s1 is created for the first modem, and the serial port object s2 is created
for the second modem.
s1 = serial('COM1');
s2 = serial('COM2');

2 Connect to the instruments — s1 and s2 are connected to the modems. Because
the default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffers as soon as it is available from the
modems.
fopen(s1)
fopen(s2)

Because the default value of the DataTerminalReady property is on, the computer
(data terminal) is now ready to exchange data with the modems. You can verify that
the modems (data sets) are ready to communicate with the computer by examining
the value of the Data Set Ready pin using thePinStatus property.

 s1.Pinstatus

ans =
 CarrierDetect: 'off'
 ClearToSend: 'on'
 DataSetReady: 'on'
 RingIndicator: 'off'

The value of the DataSetReady field is on because both modems were powered on
before they were connected to the objects.

3 Configure properties — Both modems are configured for a baud rate of 2400 bits
per second and a carriage return (CR) terminator.
s1.BaudRate = 2400;
s1.Terminator = 'CR';
s2.BaudRate = 2400;
s2.Terminator = 'CR';

4 Write and read data — Write the atd command to the first modem. This command
puts the modem “off the hook,” which is equivalent to manually lifting a phone
receiver.
fprintf(s1,'atd')

6 Controlling Instruments Using the Serial Port

6-42

Write the ata command to the second modem. This command puts the modem in
“answer mode,” which forces it to connect to the first modem.

fprintf(s2,'ata')

After the two modems negotiate their connection, you can verify the connection
status by examining the value of the Carrier Detect pin using the PinStatus
property.

s1.PinStatus

ans =
 CarrierDetect: 'on'
 ClearToSend: 'on'
 DataSetReady: 'on'
 RingIndicator: 'off'

You can also verify the modem-modem connection by reading the descriptive
message returned by the second modem.

s2.BytesAvailable

ans =
 25

out = fread(s2,25);
char(out)'

ans =
ata
CONNECT 2400/NONE

Now break the connection between the two modems by configuring the
DataTerminalReady property to off. You can verify that the modems are
disconnected by examining the Carrier Detect pin value.

s1.DataTerminalReady = 'off';
s1.PinStatus

ans =
 CarrierDetect: 'off'
 ClearToSend: 'on'
 DataSetReady: 'on'
 RingIndicator: 'off'

 Using Control Pins

6-43

5 Disconnect and clean up — Disconnect the objects from the modems, and remove
the objects from memory and from the MATLAB workspace.

fclose([s1 s2])
delete([s1 s2])
clear s1 s2

Controlling the Flow of Data: Handshaking

Data flow control or handshaking is a method used for communicating between a DCE
and a DTE to prevent data loss during transmission. For example, suppose your
computer can receive only a limited amount of data before it must be processed. As this
limit is reached, a handshaking signal is transmitted to the DCE to stop sending data.
When the computer can accept more data, another handshaking signal is transmitted to
the DCE to resume sending data.

If supported by your device, you can control data flow using one of these methods:

• “Hardware Handshaking” on page 6-44
• “Software Handshaking” on page 6-45

Note Although you may be able to configure your device for both hardware handshaking
and software handshaking at the same time, the Instrument Control Toolbox software
does not support this behavior.

You can specify the data flow control method with the FlowControl property. If
FlowControl is hardware, then hardware handshaking is used to control data flow. If
FlowControl is software, then software handshaking is used to control data flow. If
FlowControl is none, then no handshaking is used.

Hardware Handshaking

Hardware handshaking uses specific serial port pins to control data flow. In most cases,
these are the RTS and CTS pins. Hardware handshaking using these pins is described in
“The RTS and CTS Pins” on page 6-7.

If FlowControl is hardware, then the RTS and CTS pins are automatically managed by
the DTE and DCE. You can return the CTS pin value with the PinStatus property. You
can configure or return the RTS pin value with the RequestToSend property.

6 Controlling Instruments Using the Serial Port

6-44

Note Some devices also use the DTR and DSR pins for handshaking. However, these pins
are typically used to indicate that the system is ready for communication, and are not
used to control data transmission. For the Instrument Control Toolbox software,
hardware handshaking always uses the RTS and CTS pins.

If your device does not use hardware handshaking in the standard way, then you might
need to manually configure the RequestToSend property. In this case, you should
configure FlowControl to none. If FlowControl is hardware, then the
RequestToSend value that you specify might not be honored. Refer to the device
documentation to determine its specific pin behavior.

Software Handshaking

Software handshaking uses specific ASCII characters to control data flow. These
characters, known as Xon and Xoff (or XON and XOFF), are described below.
Software Handshaking Characters

Character Integer Value Description
Xon 17 Resume data transmission.
Xoff 19 Pause data transmission.

When using software handshaking, the control characters are sent over the transmission
line the same way as regular data. Therefore you need only the TD, RD, and GND pins.

The main disadvantage of software handshaking is that you cannot write the Xon or Xoff
characters while numerical data is being written to the instrument. This is because
numerical data might contain a 17 or 19, which makes it impossible to distinguish
between the control characters and the data. However, you can write Xon or Xoff while
data is being asynchronously read from the instrument because you are using both the
TD and RD pins.
Using Software Handshaking

Suppose you want to use software flow control in conjunction with your serial port
application. To do this, you must configure the instrument and the serial port object for
software flow control. For a serial port object s connected to a Tektronix TDS 210
oscilloscope, this configuration is accomplished with the following commands.

fprintf(s,'RS232:SOFTF ON')
s.FlowControl = 'software';

 Using Control Pins

6-45

To pause data transfer, you write the numerical value 19 (Xoff) to the instrument.

fwrite(s,19)

To resume data transfer, you write the numerical value 17 (Xon) to the instrument.

fwrite(s,17)

6 Controlling Instruments Using the Serial Port

6-46

Controlling Instruments Using TCP/IP and
UDP

This chapter describes specific features related to controlling instruments that use the
TCP/IP or UDP protocols.

• “TCP/IP and UDP Comparison” on page 7-2
• “Create a TCP/IP Object” on page 7-4
• “TCP/IP Communication with a Remote Host” on page 7-7
• “Create a UDP Object” on page 7-10
• “UDP Communication Between Two Hosts” on page 7-14
• “Rules for Completing Read and Write Operations over TCP/IP and UDP”

on page 7-16
• “Basic Workflow to Read and Write Data over TCP/IP” on page 7-18
• “Read and Write ASCII Data over TCP/IP” on page 7-21
• “Read and Write Binary Data over TCP/IP” on page 7-26
• “Asynchronous Read and Write Operations over TCP/IP” on page 7-32
• “Basic Workflow to Read and Write Data over UDP” on page 7-39
• “Read and Write ASCII Data over UDP” on page 7-41
• “Read and Write Binary Data over UDP” on page 7-47
• “Asynchronous Read and Write Operations over UDP” on page 7-53
• “Events and Callbacks” on page 7-60
• “Communicate Using TCP/IP Server Sockets” on page 7-64

7

TCP/IP and UDP Comparison
Transmission Control Protocol (TCP or TCP/IP) and User Datagram Protocol (UDP or
UDP/IP) are both transport protocols layered on top of the Internet Protocol (IP). Use the
TCP/IP and UDP interfaces for reading and writing both binary data and ASCII data.
You can also do asynchronous operations. You can read and write to servers, computers,
instruments, and use applications such as streaming video and audio, point of sale
systems, and other business applications.

Supported Platforms

The TCP/IP and UDP interfaces are supported on the following platforms.

• Linux 64-bit
• macOS 64-bit
• Microsoft Windows 64-bit

Interface Comparison

TCP/IP and UDP are compared below:

• Connection Versus Connectionless — TCP/IP is a connection-based protocol,
while UDP is a connectionless protocol. In TCP/IP, the two ends of the communication
link must be connected at all times during the communication. An application using
UDP prepares a packet and sends it to the receiver's address without first checking to
see if the receiver is ready to receive a packet. If the receiving end is not ready to
receive a packet, the packet is lost.

• Stream Versus Packet — TCP/IP is a stream-oriented protocol, while UDP is a
packet-oriented protocol. This means that TCP/IP is considered to be a long stream of
data that is transmitted from one end of the connection to the other end, and another
long stream of data flowing in the opposite direction. The TCP/IP stack is responsible
for breaking the stream of data into packets and sending those packets while the
stack at the other end is responsible for reassembling the packets into a data stream
using information in the packet headers. UDP, on the other hand, is a packet-oriented
protocol where the application itself divides the data into packets and sends them to
the other end. The other end does not have to reassemble the data into a stream.
Note, some applications might present the data as a stream when the underlying
protocol is UDP. However, this is the layering of an additional protocol on top of UDP,
and it is not something inherent in the UDP protocol itself.

7 Controlling Instruments Using TCP/IP and UDP

7-2

• TCP/IP Is a Reliable Protocol, While UDP Is Unreliable — The packets that are
sent by TCP/IP contain a unique sequence number. The starting sequence number is
communicated to the other side at the beginning of communication. The receiver
acknowledges each packet, and the acknowledgment contains the sequence number so
that the sender knows which packet was acknowledged. This implies that any packets
lost on the way can be retransmitted (the sender would know that they did not reach
their destination because it had not received an acknowledgment). Also, packets that
arrive out of sequence can be reassembled in the proper order by the receiver.

Further, timeouts can be established because the sender knows (from the first few
packets) how long it takes on average for a packet to be sent and its acknowledgment
received. UDP, on the other hand, sends the packets and does not keep track of them.
Thus, if packets arrive out of sequence, or are lost in transmission, the receiving end
(or the sending end) has no way of knowing.

Note that "unreliable" is used in the sense of "not guaranteed to succeed" as opposed to
"will fail a lot of the time." In practice, UDP is quite reliable as long as the receiving
socket is active and is processing data as quickly as it arrives.

See Also

Related Examples
• “Create a TCP/IP Object” on page 7-4
• “TCP/IP Communication with a Remote Host” on page 7-7
• “Create a UDP Object” on page 7-10

 See Also

7-3

Create a TCP/IP Object
In this section...
“TCP/IP Object” on page 7-4
“TCP/IP Object Display” on page 7-5

TCP/IP Object

You create a TCP/IP object with the tcpip function. tcpip requires the name of the
remote host as an input argument. In most cases, you need to specify the remote port
value. If you do not specify the remote port, then 80 is used. As described in “Configuring
Properties During Object Creation” on page 3-3, you can also configure property values
during object creation.

Each TCP/IP object is associated with one instrument. For example, to create a TCP/IP
object for a Sony/Tektronix AWG520 Arbitrary Waveform Generator,

t = tcpip('sonytekawg.yourdomain.com',4000);

Note that the port number is fixed and is found in the instrument's documentation.

The TCP/IP object t now exists in the MATLAB workspace. You can display the class of
t with the whos command.

whos t
 Name Size Bytes Class

 t 1x1 640 tcpip object

Grand total is 16 elements using 640 bytes

Once the TCP/IP object is created, the following properties are automatically assigned
values. These general-purpose properties provide information about the TCP/IP object
based on the object type, the remote host, and the remote port.

7 Controlling Instruments Using TCP/IP and UDP

7-4

TCP/IP Descriptive Properties

Property Name Description
Name Specify a descriptive name for the TCP/IP object.
RemoteHost Specify the remote host.
RemotePort Specify the remote host port for the connection.
Type Indicate the object type.

You can display the values of these properties for t.

get(t,{'Name','RemoteHost','RemotePort','Type'})
ans =
 [1x31 char] [1x24 char] [4000] 'tcpip'

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

TCP/IP Object Display

The TCP/IP object provides you with a convenient display that summarizes important
configuration and state information. You can invoke the display summary these three
ways:

• Type the TCP/IP object variable name at the command line.
• Exclude the semicolon when creating a TCP/IP object.
• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the TCP/IP object t is given below.

TCP/IP Object : TCP/IP-sonytekawg.yourdomain.com

Communication Settings
 RemotePort: 4000

 Create a TCP/IP Object

7-5

 RemoteHost: sonytekawg.yourdomain.com
 Terminator: 'LF'

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

7 Controlling Instruments Using TCP/IP and UDP

7-6

TCP/IP Communication with a Remote Host
These are the minimum steps required to communicate with a remote host using TCP/IP.

In this example, you read a page from the RFC Editor Web site using a TCP/IP object.

1 Create and configure an instrument object — First you create a TCP/IP object
in the MATLAB workspace. Port 80 is the standard port for Web servers.

t = tcpip('www.rfc-editor.org', 80);

By default, the TCP/IP object has an InputBufferSize of 512, which means it can
only read 512 bytes at a time. The rfc-editor.org Web page data is much greater
than 512 bytes, so you need to set a larger value for this property.

t.InputBufferSize = 30000;
2 Connect the object — Next, you open the connection to the server. If the server is

not present or is not accepting connections you would get an error here.

fopen(t);
3 Write and read data — You can now communicate with the server using the

functions fprintf, fscanf, fwrite, and fread.

To ask a Web server to send a Web page, you use the GET command. You can ask for
a text file from the RFC Editor Web site using 'GET (path/filename)'.

fprintf(t, 'GET /rfc/rfc793.txt');

The server receives the command and sends back the Web page. You can see if any
data was sent back by looking at the BytesAvailable property of the object.

t.BytesAvailable

Now you can start to read the Web page data. By default, fscanf reads one line at a
time. You can read lines of data until the BytesAvailable value is 0. Note that you
will not see a rendered web page; the HTML file data will scroll by on the screen.

while (t.BytesAvailable > 0)
 A = fscanf(t),
end

4 Disconnect and clean up — If you want to do more communication, you can
continue to read and write data here. If you are done with the object, close it and
delete it.

 TCP/IP Communication with a Remote Host

7-7

fclose(t);
delete(t);
clear t

Server Drops the Connection

This example shows what happens when a TCP/IP object loses its connection with a
remote server. The server is a Sony/Tektronix AWG520 Arbitrary Waveform Generator
(AWG). Its address is sonytekawg.yourdomain.com and its port is 4000. The AWG's
host IP address is 192.168.1.10 and is user configurable in the instrument. The
associated host name is given by your network administrator. The port number is fixed
and is found in the instrument's documentation.

The AWG can drop the connection because it is taken off line, it is powered down, and so
on:

1 Create an instrument object — Create a TCP/IP object for the AWG.

t = tcpip('sonytekawg.yourdomain.com', 4000);
2 Connect to the instrument — Connect to the remote instrument.

fopen(t)
3 Write and read data — Write a command to the instrument and read back the

result.

fprintf(t,'*IDN?')
fscanf(t)
ans =
SONY/TEK,AWG520,0,SCPI:95.0 OS:2.0 USR:2.0

Assume that the server drops the connection. If you attempt to read from the
instrument, a timeout occurs and a warning is displayed.

fprintf(t,'*IDN?')
fscanf(t)

Warning: A timeout occurred before the Terminator was reached.
(Type "warning off instrument:fscanf:unsuccessfulRead" to
suppress this warning.)
ans =
 ''

At this point, the object and the instrument are still connected.

7 Controlling Instruments Using TCP/IP and UDP

7-8

t.Status
ans =
open

If you attempt to write to the instrument again, an error message is returned and
the connection is automatically closed.

fprintf(t,'*IDN?')
??? Error using ==> fprintf
Connection closed by RemoteHost. Use FOPEN to connect to
RemoteHost.

Note that if the TCP/IP object is connected to the local host, the warning message is
not displayed. Instead, the error message is displayed following the next read
operation after the connection is dropped.

4 Disconnect and clean up — When you no longer need t, you should disconnect it
from the host, and remove it from memory and from the MATLAB workspace.

fclose(t)
delete(t)
clear t

 TCP/IP Communication with a Remote Host

7-9

Create a UDP Object
In this section...
“UDP Object” on page 7-10
“The UDP Object Display” on page 7-12
“Enable Port Sharing over UDP” on page 7-12

UDP Object

You create a UDP object with the udp function. udp does not require the name of the
remote host as an input argument. However, if you are using the object to communicate
with a specific instrument, you should specify the remote host and the port number.

Note Although UDP is a stateless connection, opening a UDP object with an invalid host
name will generate an error.

As described in “Configuring Properties During Object Creation” on page 3-3, you can
also configure property values during object creation, such as the LocalPort property if
you will use the object to read data from the instrument.

For example, to create a UDP object associated with the remote host 127.0.0.1, remote
port 4012, and local port 3533,

u = udp('127.0.0.1', 4012, 'LocalPort', 3533);

The UDP object u now exists in the MATLAB workspace. You can display the class of u
with the whos command.

whos u
 Name Size Bytes Class

 u 1x1 632 udp object

Grand total is 12 elements using 632 bytes

When the UDP object is created, the following properties are assigned values based on
the values provided to the upd function. These general purpose properties provide
information about the UDP object.

7 Controlling Instruments Using TCP/IP and UDP

7-10

UDP Descriptive Properties

Property Name Description
Name Specify a descriptive name for the UDP object.
RemoteHost Specify the remote host.
RemotePort Specify the remote host port for the connection.
Type Indicate the object type.
LocalPort Specify the local host port, if you are expecting to receive

data from the instrument.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

You can display the values of these properties for u with the get function.

u.Name
ans =
 UDP-127.0.0.1

u.RemoteHost
ans =
 127.0.0.1

u.RemotePort
ans =
 4012

u.Type
ans =
 udp

u.LocalPort'
ans =
 3533

 Create a UDP Object

7-11

The UDP Object Display
The UDP object provides you with a convenient display that summarizes important
configuration and state information. You can invoke the display summary these three
ways:

• Type the UDP object variable name at the command line.
• Exclude the semicolon when creating a UDP object.
• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the UDP object u is given below.

UDP Object : UDP-127.0.0.1

Communication Settings
 RemotePort: 4012
 RemoteHost: 127.0.0.1
 Terminator: 'LF'

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

Enable Port Sharing over UDP
UDP ports can be shared by other applications to allow for multiple applications to listen
to the UDP datagrams on that port. You can bind a UDP object to a specific LocalPort
number, and in another application bind a UDP socket to that same local port number so
both can receive UDP broadcast data.

This allows for the ability to listen to UDP broadcasts on the same local port number in
both MATLAB and other applications. You can enable and disable this capability with a
new property of the UDP object called EnablePortSharing.

7 Controlling Instruments Using TCP/IP and UDP

7-12

The EnablePortSharing property allows you to control UDP port sharing, and the
possible values are on and off. The default value is off.
EnablePortSharing Values Result
'on' Allows other UDP sockets to bind to the

UDP object’s LocalPort.
'off' (default) Prevents other UDP sockets from binding

to the UDP object’s LocalPort.

Note that you need to set this property before calling fopen on the UDP object, or you
will get an error.

This example shows creating a UDP object, assigning the local port, enabling port
sharing, then opening the connection.

u = udp();
u.LocalPort = 5000;
u.EnablePortSharing = 'on';
fopen(u)

You can now do read and write operations, and other applications can access the port
since port sharing is enabled.

 Create a UDP Object

7-13

UDP Communication Between Two Hosts
These are the minimum steps required to communicate between two hosts over UDP.

This example illustrates how you can use UDP objects to communicate between two
dedicated hosts. In this example, you know the names of both hosts and the ports they
use for communication with each other. One host has the name doejohn.dhpc, using
local port 8844; and the other host is doetom.dhpc, using local port 8866. Note that
each host regards the other host's port as the RemotePort:

1 Create interface objects — Create a UDP object on each host, referencing the
other as the remote host.

On host doejohn.dhpc, create u1. The object constructor specifies the name of the
remote host, the remote port on that other host, and the local port to use on the
machine where this object is created:

u1 = udp('doetom.dhpc', 'RemotePort', 8866, 'LocalPort', 8844)

On host doetom.dhpc, create u2:

u2 = udp('doejohn.dhpc', 'RemotePort', 8844, 'LocalPort', 8866)
2 Connect the objects — Open both UDP objects, so that each can communicate with

the other host.

On host doejohn.dhpc, open u1:

fopen(u1)

On host doetom.dhpc, open u2:

fopen(u2)
3 Write and read data — Communication between the two hosts is now a matter of

sending and receiving data. Write a message from doejohn.dhpc to doetom.dhpc.

On host doejohn.dhpc, write data to the remote host via u1:

fprintf(u1, 'Ready for data transfer.')

On host doetom.dhpc, read data coming in from the remote host via u2:

7 Controlling Instruments Using TCP/IP and UDP

7-14

fscanf(u2)
ans =
Ready for data transfer.

4 Disconnect and clean up — When you no longer need u1 on host doejohn.dhpc,
you should disconnect it and remove it from memory and from the MATLAB
workspace.

fclose(u1)
delete(u1)
clear u1

When you no longer need u2, perform a similar cleanup on the host doetom.dhpc.

fclose(u2)
delete(u2)
clear u2

 UDP Communication Between Two Hosts

7-15

Rules for Completing Read and Write Operations over TCP/IP
and UDP

The rules for completing synchronous and asynchronous read and write operations are
described here.

For a general overview about writing and reading data, as well as a list of all associated
functions and properties, refer to “Communicating with Your Instrument” on page 2-8.

Completing Write Operations
A write operation using fprintf or fwrite completes when one of these conditions is
satisfied:

• The specified data is written.
• The time specified by the Timeout property passes.

In addition to these rules, you can stop an asynchronous write operation at any time with
the stopasync function.

A text command is processed by the instrument only when it receives the required
terminator. For TCP/IP and UDP objects, each occurrence of \n in the ASCII command is
replaced with the Terminator property value. Because the default format for fprintf
is %s\n, all commands written to the instrument will end with the Terminator value.
The default value of Terminator is the line feed character. The terminator required by
your instrument will be described in its documentation.

Completing Read Operations
A read operation with fgetl, fgets, fscanf, or readasync completes when one of
these conditions is satisfied:

• The terminator specified by the Terminator property is read. For UDP objects,
DatagramTerminateMode must be off.

• The time specified by the Timeout property passes.
• The input buffer is filled.
• The specified number of values is read (fscanf and readasync only). For UDP

objects, DatagramTerminateMode must be off.

7 Controlling Instruments Using TCP/IP and UDP

7-16

• A datagram is received (for UDP objects, only when DatagramTerminateMode is on).

A read operation with fread completes when one of these conditions is satisfied:

• The time specified by the Timeout property passes.
• The input buffer is filled.
• The specified number of values is read. For UDP objects, DatagramTerminateMode

must be off.
• A datagram is received (for UDP objects, only when DatagramTerminateMode is on).

Note Set the terminator property to '' (null), if appropriate, to ensure efficient
throughput of binary data.

In addition to these rules, you can stop an asynchronous read operation at any time with
the stopasync function.

 Rules for Completing Read and Write Operations over TCP/IP and UDP

7-17

Basic Workflow to Read and Write Data over TCP/IP
This example illustrates how to use text and binary read and write operations with a
TCP/IP object connected to a remote instrument. In this example, you create a vector of
waveform data in the MATLAB workspace, upload the data to the instrument, and then
read back the waveform.

The instrument is a Sony/Tektronix AWG520 Arbitrary Waveform Generator (AWG). Its
address is sonytekawg.yourdomain.com and its port is 4000. The AWG's host IP
address is 192.168.1.10 and is user configurable in the instrument. The associated host
name is given by your network administrator. The port number is fixed and is found in
the instrument's documentation:

1 Create an instrument object — Create a TCP/IP object associated with the AWG.

t = tcpip('sonytekawg.yourdomain.com',4000);
2 Connect to the instrument — Before establishing a connection, the

OutputBufferSize must be large enough to hold the data being written. In this
example, 2577 bytes are written to the instrument. Therefore, the
OutputBufferSize is set to 3000.

t.OutputBufferSize = 3000)

You can now connect t to the instrument.

fopen(t)
3 Write and read data — Since the instrument's byte order is little-endian, configure

the ByteOrder property to littleEndian.

t.ByteOrder = 'littleEndian'

Create the sine wave data.

x = (0:499).*8*pi/500;
data = sin(x);
marker = zeros(length(data),1);
marker(1) = 3;

Instruct the instrument to write the file sin.wfm with Waveform File format, a total
length of 2544 bytes, and a combined data and marker length of 2500 bytes.

fprintf(t,'%s',['MMEMORY:DATA "sin.wfm",#42544MAGIC 1000' 13 10])
fprintf(t,'%s','#42500')

7 Controlling Instruments Using TCP/IP and UDP

7-18

Write the sine wave to the instrument.

for (i = 1:length(data)),
 fwrite(t,data(i),'float32');
 fwrite(t,marker(i));
end

Instruct the instrument to use a clock frequency of 100 MS/s for the waveform.

fprintf(t,'%s',['CLOCK 1.0000000000e+008' 13 10 10])

Read the waveform stored in the function generator's hard drive. The waveform
contains 2000 bytes plus markers, header, and clock information. To store this data,
close the connection and configure the input buffer to hold 3000 bytes.

fclose(t)
t.InputBufferSize = 3000)

Reopen the connection to the instrument.

fopen(t)

Read the file sin.wfm from the function generator.

fprintf(t,'MMEMORY:DATA? "sin.wfm" ')
data = fread(t,t.BytesAvailable);

The next set of commands reads the same waveform as a float32 array. To begin,
write the waveform to the AWG.

fprintf(t,'MMEMORY:DATA? "sin.wfm" ')

Read the file header as ASCII characters.

header1 = fscanf(t)
header1 =
#42544MAGIC 1000

Read the next six bytes, which specify the length of data.

header2 = fscanf(t,'%s',6)
header2 =
#42500

 Basic Workflow to Read and Write Data over TCP/IP

7-19

Read the waveform using float32 precision and read the markers using uint8
precision. Note that one float32 value consists of four bytes. Therefore, the
following commands read 2500 bytes.

data = zeros(500,1);
marker = zeros(500,1);
for i = 1:500,
 data(i) = fread(t,1,'float32');
 marker(i) = fread(t,1,'uint8');
end

Read the remaining data, which consists of clock information and termination
characters.

clock = fscanf(t);
cleanup = fread(t,2);

4 Disconnect and clean up — When you no longer need t, you should disconnect it
from the host, and remove it from memory and from the MATLAB workspace.

fclose(t)
delete(t)
clear t

7 Controlling Instruments Using TCP/IP and UDP

7-20

Read and Write ASCII Data over TCP/IP

In this section...
“Functions and Properties” on page 7-21
“Configuring and Connecting to the Server” on page 7-22
“Writing ASCII Data” on page 7-23
“ASCII Write Properties” on page 7-23
“Reading ASCII Data” on page 7-24
“ASCII Read Properties” on page 7-25
“Cleanup” on page 7-25

This section provides details and examples exploring ASCII read and write operations
with a TCP/IP object.

Note Most bench-top instruments (oscilloscopes, function generators, etc.) that provide
network connectivity do not use raw TCP socket communication for instrument command
and control. Instead, it is supported through the VISA standard. For more information on
using VISA to communicate with your instrument, see “VISA Overview” on page 5-2.

Functions and Properties

These functions are used when reading and writing text:
Function Purpose
fprintf Write text to the server.
fscanf Read data from the server and format as text.

These properties are associated with reading and writing text:
Property Purpose
ValuesReceived Specifies the total number of values read from the server.
ValuesSent Specifies the total number of values sent to the server.
InputBufferSize Specifies the total number of bytes that can be queued in the

input buffer at one time.

 Read and Write ASCII Data over TCP/IP

7-21

Property Purpose
OutputBufferSize Specifies the total number of bytes that can be queued in the

output buffer at one time.
Terminator Character used to terminate commands sent to the server.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Configuring and Connecting to the Server

For this example, we will use an echo server that is provided with the toolbox. The echo
server allows you to experiment with the basic functionality of the TCP/IP objects
without connecting to an actual device. An echo server is a service that returns to the
sender's address and port, the same bytes it receives from the sender.

echotcpip('on', 4000)

You need to create a TCP/IP object. In this example, create a TCP/IP object associated
with the host 127.0.0.1 (your local machine), port 4000. In general, the host name or
address and the host port will be defined by the device and your network configuration.

t = tcpip('127.0.0.1', 4000);

Before you can perform a read or write operation, you must connect the TCP/IP object to
the server with the fopen function.

fopen(t)

If the object was successfully connected, its Status property is automatically configured
to open.

t.Status
ans =
 open

7 Controlling Instruments Using TCP/IP and UDP

7-22

Writing ASCII Data

You use the fprintf function to write ASCII data to the server.

fprintf(t, 'Hello World 123');

By default, the fprintf function operates in a synchronous mode. This means that
fprintf blocks the MATLAB command line until one of the following occurs:

• All the data is written
• A timeout occurs as specified by the Timeout property

By default the fprintf function writes ASCII data using the %s\n format. All
occurrences of \n in the command being written to the server are replaced with the
Terminator property value. When using the default format, %s\n, all commands
written to the server will end with the Terminator character.

For the previous command, the linefeed (LF) is sent after 'Hello World 123' is
written to the server, thereby indicating the end of the command.

You can also specify the format of the command written by providing a third input
argument to fprintf. The accepted format conversion characters include: d, i, o, u, x, X,
f, e, E, g, G, c, and s.

For example, the data command previously shown can be written to the server using
three calls to fprintf.

fprintf(t, '%s', 'Hello');
fprintf(t, '%s', ' World');
fprintf(t, '%s\n', ' 123');

The Terminator character indicates the end of the command and is sent after the last
call to fprintf.

ASCII Write Properties

The OutputBufferSize property specifies the maximum number of bytes that can be
written to the server at once. By default, OutputBufferSize is 512.

 Read and Write ASCII Data over TCP/IP

7-23

t.OutputBufferSize
ans =
 512

The ValuesSent property indicates the total number of values written to the server
since the object was connected to the server.

t.ValuesSent
ans =
 32

Reading ASCII Data

You use the fscanf function to read ASCII data from the server. For example, to read
back the data returned from the echo server for our first fprintf command:

data = fscanf(t)
data =
 Hello World 123

By default, the fscanf function reads data using the '%c' format and blocks the
MATLAB command line until one of the following occurs:

• The terminator is received as specified by the Terminator property
• A timeout occurs as specified by the Timeout property
• The input buffer is filled
• The specified number of values is read

You can also specify the format of the data read by providing a second input argument to
fscanf. The accepted format conversion characters include: d, i, o, u, x, X, f, e, E, g, G, c,
and s.

The following commands return a numeric value as a double.

Clear anything still in the input buffer from the previous commands.

flushinput(t);

Send the data to the server.

fprintf(t, '0.8000');

7 Controlling Instruments Using TCP/IP and UDP

7-24

Read the response.

data = fscanf(t, '%f')
data =
 0.8000

isnumeric(data)
ans =
 1

ASCII Read Properties

The InputBufferSize property specifies the maximum number of bytes you can read
from the server. By default, InputBufferSize is 512.

t.InputBufferSize
ans =
 512

The ValuesReceived property indicates the total number of values read from the
server, including the terminator.

t.ValuesReceived
ans =
 32

Cleanup

If you are finished with the TCP/IP object, disconnect it from the server, remove it from
memory, and remove it from the workspace. If you are using the echo server, turn it off.

fclose(t);
delete(t);
clear t

echotcpip('off');

 Read and Write ASCII Data over TCP/IP

7-25

Read and Write Binary Data over TCP/IP

In this section...
“Functions and Properties” on page 7-26
“Configuring and Connecting to the Server” on page 7-27
“Writing Binary Data” on page 7-28
“Binary Write Properties” on page 7-29
“Configuring InputBufferSize” on page 7-29
“Reading Binary Data” on page 7-30
“Cleanup” on page 7-31

This section provides details and examples exploring binary read and write operations
with a TCP/IP object.

Note Most bench-top instruments (oscilloscopes, function generators, etc.) that provide
network connectivity do not use raw TCP socket communication for instrument command
and control. Instead, it is supported through the VISA standard. For more information on
using VISA to communicate with your instrument, see “VISA Overview” on page 5-2.

Functions and Properties

These functions are used when reading and writing binary data:
Function Purpose
fread Read binary data from the server.
fwrite Write binary data to the server.

These properties are associated with reading and writing binary data:
Property Purpose
ValuesReceived Specifies the total number of values read from the server.
ValuesSent Specifies the total number of values sent to the server.
InputBufferSize Specifies the total number of bytes that can be queued in the

input buffer at one time.

7 Controlling Instruments Using TCP/IP and UDP

7-26

Property Purpose
OutputBufferSize Specifies the total number of bytes that can be queued in the

output buffer at one time.
ByteOrder Specifies the byte order of the server.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Configuring and Connecting to the Server

For this example, we will use an echo server that is provided with the toolbox. The echo
server allows you to experiment with the basic functionality of the TCP/IP objects
without connecting to an actual device. An echo server is a service that returns to the
sender's address and port, the same bytes it receives from the sender.

echotcpip('on', 4000)

You need to create a TCP/IP object. In this example, create a TCP/IP object associated
with the host 127.0.0.1 (your local machine), port 4000. In general, the host name or
address and the host port will be defined by the device and your network configuration.

t = tcpip('127.0.0.1', 4000);

You may need to configure the OutputBufferSize of the TCP/IP object. The
OutputBufferSize property specifies the maximum number of bytes that can be
written to the server at once. By default, OutputBufferSize is 512.

t.OutputBufferSize
ans =
 512

If the command specified in fwrite contains more than 512 bytes, an error is returned
and no data is written to the server. In this example 4000 bytes will be written to the
server. Therefore, the OutputBufferSize is increased to 4000.

t.OutputBufferSize = 4000;
t.OutputBufferSize

 Read and Write Binary Data over TCP/IP

7-27

ans =
 4000

You may need to configure the ByteOrder of the TCP/IP object. The ByteOrder
property specifies the byte order of the server. By default ByteOrder is bigEndian.

t.ByteOrder
ans =
 bigEndian

If the server's byte order is little-endian, the ByteOrder property of the object can be
configured to littleEndian:

t.ByteOrder = littleEndian
t.ByteOrder
ans =
 littleEndian

Before you can perform a read or write operation, you must connect the TCP/IP object to
the server with the fopen function.

fopen(t)

If the object was successfully connected, its Status property is automatically configured
to open.

t.Status
ans =
 open

Writing Binary Data

You use the fwrite function to write binary data to the server. For example, the
following command will send a sine wave to the server.

Construct the sine wave to be written to the server.

x = (0:999) .* 8 * pi / 1000;
data = sin(x);

Write the sine wave to the server.

fwrite(t, data, 'float32');

7 Controlling Instruments Using TCP/IP and UDP

7-28

By default, the fwrite function operates in a synchronous mode. This means that
fwrite blocks the MATLAB command line until one of the following occurs:

• All the data is written
• A timeout occurs as specified by the Timeout property

By default the fwrite function writes binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fwrite.

Note When performing a write operation, you should think of the transmitted data in
terms of values rather than bytes. A value consists of one or more bytes. For example,
one uint32 value consists of four bytes.

Binary Write Properties

The ValuesSent property indicates the total number of values written to the server
since the object was connected to the server.

t.ValuesSent
ans =
 1000

Configuring InputBufferSize

The InputBufferSize property specifies the maximum number of bytes that you can
read from the server. By default, InputBufferSize is 512.

t.InputBufferSize
ans =
 512

Next, the waveform stored in the function generator's memory will be read. The
waveform contains 4000 bytes. Configure the InputBufferSize to hold 4000 bytes.
Note, the InputBufferSize can be configured only when the object is not connected to
the server.

fclose(t);
t.InputBufferSize = 4000;

 Read and Write Binary Data over TCP/IP

7-29

t.InputBufferSize
ans =
 4000

Now that the property is configured correctly, you can reopen the connection to the
server:

fopen(t);

Reading Binary Data

You use the fread function to read binary data from the server.

The fread function blocks the MATLAB command line until one of the following occurs:

• A timeout occurs as specified by the Timeout property
• The specified number of values is read
• The InputBufferSize number of values is read

By default the fread function reads binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fread.

Note When performing a read operation, you should think of the received data in terms
of values rather than bytes. A value consists of one or more bytes. For example, one
uint32 value consists of four bytes.

For reading float32 binary data, send the waveform again. Closing the object clears
any available data from earlier writes.

fwrite(t, data, 'float32');

Now read the same waveform as a float32 array.

data = fread(t, 1000, 'float32');

The ValuesReceived property indicates the total number of values read from the
server.

7 Controlling Instruments Using TCP/IP and UDP

7-30

t.ValuesReceived
ans =
 1000

Cleanup

If you are finished with the TCP/IP object, disconnect it from the server, remove it from
memory, and remove it from the workspace. If you are using the echo server, turn it off.

fclose(t);
delete(t);
clear t

echotcpip('off');

 Read and Write Binary Data over TCP/IP

7-31

Asynchronous Read and Write Operations over TCP/IP

In this section...
“Functions and Properties” on page 7-32
“Synchronous Versus Asynchronous Operations” on page 7-33
“Configuring and Connecting to the Server” on page 7-33
“Reading Data Asynchronously” on page 7-34
“Reading Data Asynchronously – Continuous ReadAsyncMode” on page 7-34
“Reading Data Asynchronously – Manual ReadAsyncMode” on page 7-35
“Defining an Asynchronous Read Callback” on page 7-36
“Using Callbacks During an Asynchronous Read” on page 7-37
“Writing Data Asynchronously” on page 7-37
“Cleanup” on page 7-37

This section provides details and examples exploring asynchronous read and write
operations with a TCP/IP object.

Note Most bench-top instruments (oscilloscopes, function generators, etc.) that provide
network connectivity do not use raw TCP socket communication for instrument command
and control. Instead, it is supported through the VISA standard. For more information on
using VISA to communicate with your instrument, see “VISA Overview” on page 5-2.

Functions and Properties

These functions are associated with reading and writing text asynchronously:
Function Purpose
fprintf Write text to a server.
readasync Asynchronously read bytes from a server.
stopasync Stop an asynchronous read or write operation.

These properties are associated with reading and writing text asynchronously:

7 Controlling Instruments Using TCP/IP and UDP

7-32

Property Purpose
BytesAvailable Indicates the number of bytes available in the input buffer.
TransferStatus Indicates what type of asynchronous operation is in progress.
ReadAsyncMode Indicates whether data is read continuously in the background or

whether you must call the readasync function to read data
asynchronously.

Additionally, you can use all the callback properties during asynchronous read and write
operations.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Synchronous Versus Asynchronous Operations

The object can operate in synchronous mode or in asynchronous mode. When the object is
operating synchronously, the read and write routines block the MATLAB command line
until the operation has completed or a timeout occurs. When the object is operating
asynchronously, the read and write routines return control immediately to the MATLAB
command line.

Additionally, you can use callback properties and callback functions to perform tasks as
data is being written or read. For example, you can create a callback function that
notifies you when the read or write operation has finished.

Configuring and Connecting to the Server

For this example, we will use an echo server that is provided with the toolbox. The echo
server allows you to experiment with the basic functionality of the TCP/IP objects
without connecting to an actual device. An echo server is a service that returns to the
sender's address and port, the same bytes it receives from the sender.

echotcpip('on', 4000)

 Asynchronous Read and Write Operations over TCP/IP

7-33

You need to create a TCP/IP object. In this example, create a TCP/IP object associated
with the host 127.0.0.1 (your local machine), port 4000. In general, the host name or
address and the host port will be defined by the device and your network configuration.

t = tcpip('127.0.0.1', 4000);

Before you can perform a read or write operation, you must connect the TCP/IP object to
the server with the fopen function.

fopen(t)

If the object was successfully connected, its Status property is automatically configured
to open.

t.Status
ans =
 open

Reading Data Asynchronously
You can read data asynchronously with the TCP/IP object in one of these two ways:

• Continuously, by setting ReadAsyncMode to continuous. In this mode, data is
automatically stored in the input buffer as it becomes available from the server.

• Manually, by setting ReadAsyncMode to manual. In this mode, you must call the
readasync function to store data in the input buffer.

The fscanf, fread, fgetl and fgets functions are used to bring the data from the
input buffer into MATLAB. These functions operate synchronously.

Reading Data Asynchronously – Continuous ReadAsyncMode
To begin, read data continuously.

t.ReadAsyncMode = continuous;

Now, send data to the server that will be returned for reading.

fprintf(t, 'Hello World 123');

Because the ReadAsyncMode property is set to continuous, the object is continuously
checking whether any data is available. Once the last fprintf function completes, the

7 Controlling Instruments Using TCP/IP and UDP

7-34

server begins sending data, the data is read from the server and is stored in the input
buffer.

t.BytesAvailable
ans =
 16

You can bring the data from the object's input buffer into the MATLAB workspace with
fscanf.

fscanf(t)
ans =
 Hello World 123

Reading Data Asynchronously – Manual ReadAsyncMode

Next, read data manually.

t.ReadAsyncMode = manual;

Now, send data to the server that will be returned for reading.

fprintf(t, 'Hello World 456');

Once the last fprintf function completes, the server begins sending data. However,
because ReadAsyncMode is set to manual, the object is not reading the data being sent
from the server. Therefore no data is being read and placed in the input buffer.

t.BytesAvailable
ans =
 0

The readasync function can asynchronously read the data from the server. The
readasync function returns control to the MATLAB command line immediately.

The readasync function takes two input arguments. The first argument is the server
object and the second argument is the size, the amount of data to be read from the
server.

The readasync function without a size specified assumes size is given by the
difference between the InputBufferSize property value and the BytesAvailable
property value. The asynchronous read terminates when:

 Asynchronous Read and Write Operations over TCP/IP

7-35

• The terminator is read as specified by the Terminator property
• The specified number of bytes have been read
• A timeout occurs as specified by the Timeout property
• The input buffer is filled

An error event will be generated if readasync terminates due to a timeout.

The object starts querying the server for data when the readasync function is called.
Because all the data was sent before the readasync function call, no data will be stored
in the input buffer and the data is lost.

When the TCP/IP object is in manual mode (the ReadAsyncMode property is configured
to manual), data that is sent from the server to the computer is not automatically stored
in the input buffer of the TCP/IP object. Data is not stored until readasync or one of the
blocking read functions is called.

Manual mode should be used when a stream of data is being sent from your server and
you only want to capture portions of the data.

Defining an Asynchronous Read Callback

You can configure a TCP/IP object to notify you when a terminator has been read using
the dispcallback function.

t.ReadAsyncMode = 'continuous';
t.BytesAvailableFcn = 'dispcallback';

Note, the default value for the BytesAvailableFcnMode property indicates that the
callback function defined by the BytesAvailableFcn property will be executed when
the terminator has been read.

The callback function dispcallback displays event information for the specified event.
Using the syntax dispcallback(obj, event), it displays a message containing the
type of event, the name of the object that caused the event to occur, and the time the
event occurred.

callbackTime = datestr(datenum(event.Data.AbsTime));
fprintf(['A ' event.Type ' event occurred for ' obj.Name ' at '
 callbackTime '.\n']);

7 Controlling Instruments Using TCP/IP and UDP

7-36

Using Callbacks During an Asynchronous Read
Once the terminator is read from the server and placed in the input buffer,
dispcallback is executed and a message is posted to the MATLAB command window
indicating that a BytesAvailable event occurred.
fprintf(t, 'Hello World 789')
t.BytesAvailable
ans =
 16

data = fscanf(t, '%c', 18)
data =
 Hello World 789

Note If you need to stop an asynchronous read or write operation, you do not have to
wait for the operation to complete. You can use the stopasync function to stop the
asynchronous read or write.

Writing Data Asynchronously
You can perform an asynchronous write with the fprintf or fwrite functions by
passing 'async' as the last input argument.

In asynchronous mode, you can use callback properties and callback functions to perform
tasks while data is being written. For example, configure the object to notify you when an
asynchronous write operation completes.
t.OutputEmptyFcn = 'dispcallback';
fprintf(t, 'Hello World 123', 'async')

Note If you need to stop an asynchronous read or write operation, you do not have to
wait for the operation to complete. You can use the stopasync function to stop the
asynchronous read or write.

Cleanup
If you are finished with the TCP/IP object, disconnect it from the server, remove it from
memory, and remove it from the workspace. If you are using the echo server, turn it off.

 Asynchronous Read and Write Operations over TCP/IP

7-37

fclose(t);
delete(t);
clear t

echotcpip('off');

7 Controlling Instruments Using TCP/IP and UDP

7-38

Basic Workflow to Read and Write Data over UDP
This example shows the basic workflow of text read and write operations with a UDP
object connected to a remote instrument.

The instrument used is an echo server on a Linux-based PC. An echo server is a service
available from the operating system that returns (echoes) received data to the sender.
The host name is daqlab11 and the port number is 7. The host name is assigned by your
network administrator.

1 Create an instrument object — Create a UDP object associated with daqlab11.

u = udp('daqlab11',7);
2 Connect to the instrument — Connect u to the echo server.

fopen(u)
3 Write and read data — You use the fprintf function to write text data to the

instrument. For example, write the following string to the echo server.

fprintf(u,'Request Time')

UDP sends and receives data in blocks that are called datagrams. Each time you
write or read data with a UDP object, you are writing or reading a datagram. For
example, the string sent to the echo server constitutes a datagram with 13 bytes —
12 ASCII bytes plus the line feed terminator.

You use the fscanf function to read text data from the echo server.

fscanf(u)
ans =
Request Time

The DatagramTerminateMode property indicates whether a read operation
terminates when a datagram is received. By default, DatagramTerminateMode is
on and a read operation terminates when a datagram is received. To return multiple
datagrams in one read operation, set DatagramTerminateMode to off.

The following commands write two datagrams. Note that only the second datagram
sends the terminator character.

fprintf(u,'%s','Request Time')
fprintf(u,'%s\n','Request Time')

 Basic Workflow to Read and Write Data over UDP

7-39

Since DatagramTerminateMode is off, fscanf reads across datagram boundaries
until the terminator character is received.

u.DatagramTerminateMode = 'off'
data = fscanf(u)
data =
Request TimeRequest Time

4 Disconnect and clean up — When you no longer need u, you should disconnect it
from the host, and remove it from memory and from the MATLAB workspace.

fclose(u)
delete(u)
clear u

Note UDP ports can be shared by other applications to allow for multiple applications to
listen to the UDP datagrams on that port. This allows for the ability to listen to UDP
broadcasts on the same local port number in both MATLAB and other applications. You
can enable and disable this capability with a new property of the UDP object called
EnablePortSharing. See “Enable Port Sharing over UDP” on page 7-12.

7 Controlling Instruments Using TCP/IP and UDP

7-40

Read and Write ASCII Data over UDP
This section provides details and examples exploring ASCII read and write operations
with a UDP object.

In this section...
“Functions and Properties” on page 7-41
“Configuring and Connecting to the Server” on page 7-42
“Writing ASCII Data” on page 7-42
“ASCII Write Properties” on page 7-43
“Reading ASCII Data” on page 7-44
“ASCII Read Properties” on page 7-45
“Cleanup” on page 7-46

Functions and Properties

These functions are used when reading and writing text:
Function Purpose
fprintf Write text to the server.
fscanf Read data from the server and format as text.

These properties are associated with reading and writing text:
Property Purpose
ValuesReceived Specifies the total number of values read from the server.
ValuesSent Specifies the total number of values sent to the server.
InputBufferSize Specifies the total number of bytes that can be queued in the

input buffer at one time.
OutputBufferSize Specifies the total number of bytes that can be queued in the

output buffer at one time.
Terminator Character used to terminate commands sent to the server.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a

 Read and Write ASCII Data over UDP

7-41

property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Configuring and Connecting to the Server
For this example, we will use an echo server that is provided with the toolbox. The echo
server allows you to experiment with the basic functionality of the UDP objects without
connecting to an actual device. An echo server is a service that returns to the sender's
address and port, the same bytes it receives from the sender.

echoudp('on', 8000)

You need to create a UDP object. In this example, create a UDP object associated with
the host 127.0.0.1 (your local machine), port 8000. In general, the host name or address
and the host port will be defined by the device and your network configuration.

u = udp('127.0.0.1', 8000);

Before you can perform a read or write operation, you must connect the UDP object to the
server with the fopen function.

fopen(u)

If the object was successfully connected, its Status property is automatically configured
to open.

u.Status
ans =
 open

Note UDP ports can be shared by other applications to allow for multiple applications to
listen to the UDP datagrams on that port. This allows for the ability to listen to UDP
broadcasts on the same local port number in both MATLAB and other applications. You
can enable and disable this capability with a new property of the UDP object called
EnablePortSharing. See “Enable Port Sharing over UDP” on page 7-12.

Writing ASCII Data
You use the fprintf function to write ASCII data to the server. For example, write a
string to the echoserver.

7 Controlling Instruments Using TCP/IP and UDP

7-42

fprintf(u, 'Request Time');

By default, the fprintf function operates in a synchronous mode. This means that
fprintf blocks the MATLAB command line until one of the following occurs:

• All the data is written
• A timeout occurs as specified by the Timeout property

By default the fprintf function writes ASCII data using the %s\n format. All
occurrences of \n in the command being written to the server are replaced with the
Terminator property value. When using the default format, %s\n, all commands
written to the server will end with the Terminator character.

For the previous command, the linefeed (LF) is sent after 'Request Time' is written to
the server, thereby indicating the end of the command.

You can also specify the format of the command written by providing a third input
argument to fprintf. The accepted format conversion characters include: d, i, o, u, x, X,
f, e, E, g, G, c, and s.

For example, the data command previously shown can be written to the server using two
calls to fprintf.

fprintf(u, '%s', 'Request');
fprintf(u, '%s'\n, 'Time');

The Terminator character indicates the end of the command and is sent after the last
call to fprintf.

ASCII Write Properties

The OutputBufferSize property specifies the maximum number of bytes that can be
written to the server at once. By default, OutputBufferSize is 512.

u.OutputBufferSize
ans =
 512

If the command specified in fprintf contains more than 512 bytes, an error is returned
and no data is written to the server.

 Read and Write ASCII Data over UDP

7-43

The ValuesSent property indicates the total number of values written to the server
since the object was connected to the server.

u.ValuesSent
ans =
 26

Remove any data that was returned from the echoserver and captured by the UDP object.

flushinput(u);

Reading ASCII Data

UDP sends and receives data in blocks that are called datagrams. Each time you write or
read data with a UDP object, you are writing or reading a datagram. For example, a
datagram with 13 bytes (12 ASCII bytes plus the LF terminator) is sent to the
echoserver.

fprintf(u, 'Request Time');

The echo server will send back a datagram containing the same 13 bytes.

u.BytesAvailable
ans =
 13

You use the fscanf function to read ASCII data from the server.

data = fscanf(u)
data =
 Request Time

By default, the fscanf function reads data using the '%c' format and blocks the
MATLAB command line until one of the following occurs:

• The terminator is received as specified by the Terminator property (if
DatagramTerminateMode is off)

• A timeout occurs as specified by the Timeout property
• The input buffer is filled
• The specified number of values is read (if DatagramTerminateMode is off)
• A datagram has been received (if DatagramTerminateMode is on)

7 Controlling Instruments Using TCP/IP and UDP

7-44

You can also specify the format of the data read by providing a second input argument to
fscanf. The accepted format conversion characters include: d, i, o, u, x, X, f, e, E, g, G, c,
and s.

For example, the character vector'0.80' sent to the echoserver can be read into
MATLAB as a double using the %f format character vector.

fprintf(u, '0.80');
data = fscanf(u, '%f')
data =
 0.8000

isnumeric(data)
ans =
 1

ASCII Read Properties

The DatagramTerminateMode property indicates whether a read operation should
terminate when a datagram is received. By default DatagramTerminateMode is on,
which means that a read operation terminates when a datagram is received. To read
multiple datagrams at once, you can set DatagramTerminateMode to off. In this
example, two datagrams are written. Note, only the second datagram sends the
Terminator character.

fprintf(u, '%s', 'Request Time');
fprintf(u, '%s\n', 'Request Time');

Since DatagramTerminateMode is off, fscanf will read across datagram boundaries
until the Terminator character is received.

u.DatagramTerminateMode = 'off';
data = fscanf(u)
data =
 Request TimeRequest Time

The InputBufferSize property specifies the maximum number of bytes you can read
from the server. By default, InputBufferSize is 512.

u.InputBufferSize
ans =
 512

 Read and Write ASCII Data over UDP

7-45

The ValuesReceived property indicates the total number of values read from the
server, including the terminator.

u.ValuesReceived
ans =
 43

Cleanup

If you are finished with the UDP object, disconnect it from the server, remove it from
memory, and remove it from the workspace. If you are using the echo server, turn it off.

fclose(u);
delete(u);
clear u

echoudp('off');

7 Controlling Instruments Using TCP/IP and UDP

7-46

Read and Write Binary Data over UDP
This section provides details and examples exploring binary read and write operations
with a UDP object.

In this section...
“Functions and Properties” on page 7-47
“Configuring and Connecting to the Server” on page 7-48
“Writing Binary Data” on page 7-49
“Configuring InputBufferSize” on page 7-50
“Reading Binary Data” on page 7-50
“Cleanup” on page 7-52

Functions and Properties

These functions are used when reading and writing binary data:
Function Purpose
fread Read binary data from the instrument or server.
fwrite Write binary data to the instrument or server.

These properties are associated with reading and writing binary data:
Property Purpose
ValuesReceived Specifies the total number of values read from the instrument or

server.
ValuesSent Specifies the total number of values sent to the instrument or

server.
InputBufferSize Specifies the total number of bytes that can be queued in the

input buffer at one time.
OutputBufferSize Specifies the total number of bytes that can be queued in the

output buffer at one time.
DatagramTerminat
eMode

Defines how fread and fscanf read operations terminate.

 Read and Write Binary Data over UDP

7-47

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Configuring and Connecting to the Server

For this example, we will use an echo server that is provided with the toolbox. The echo
server allows you to experiment with the basic functionality of the UDP objects without
connecting to an actual device. An echo server is a service that returns to the sender's
address and port, the same bytes it receives from the sender.

echoudp('on', 8000)

You need to create a UDP object. In this example, create a UDP object associated with
the host 127.0.0.1 (your local machine), port 8000. In general, the host name or address
and the host port will be defined by the device and your network configuration.

u = udp('127.0.0.1', 8000);

You may need to configure the OutputBufferSize of the UDP object. The
OutputBufferSize property specifies the maximum number of bytes that can be
written to the server at once. By default, OutputBufferSize is 512.

u.OutputBufferSize
ans =
 512

If the command specified in fwrite contains more than 512 bytes, an error is returned
and no data is written to the server. In this example 1000 bytes will be written to the
instrument. Therefore, the OutputBufferSize is increased to 1000.

u.OutputBufferSize = 1000
u.OutputBufferSize
ans =
 1000

Before you can perform a read or write operation, you must connect the UDP object to the
server with the fopen function.

fopen(u)

7 Controlling Instruments Using TCP/IP and UDP

7-48

If the object was successfully connected, its Status property is automatically configured
to open.

u.Status
ans =
 open

Note UDP ports can be shared by other applications to allow for multiple applications to
listen to the UDP datagrams on that port. This allows for the ability to listen to UDP
broadcasts on the same local port number in both MATLAB and other applications. You
can enable and disable this capability with a new property of the UDP object called
EnablePortSharing. See “Enable Port Sharing over UDP” on page 7-12.

Writing Binary Data

You use the fwrite function to write binary data to the server or instrument.

By default, the fwrite function operates in a synchronous mode. This means that
fwrite blocks the MATLAB command line until one of the following occurs:

• All the data is written
• A timeout occurs as specified by the Timeout property

By default the fwrite function writes binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fwrite.

UDP sends and receives data in blocks that are called datagrams. Each time you write or
read data with a UDP object, you are writing or reading a datagram. In the example
below, a datagram with 1000 bytes, 4 bytes per integer number, will be sent to the
echoserver.

fwrite(u, 1:250, 'int32');

Note When performing a write operation, you should think of the transmitted data in
terms of values rather than bytes. A value consists of one or more bytes. For example,
one uint32 value consists of four bytes.

 Read and Write Binary Data over UDP

7-49

The ValuesSent property indicates the total number of values written to the server
since the object was connected to the server.

u.ValuesSent
ans =
 250

Configuring InputBufferSize

The InputBufferSize property specifies the maximum number of bytes that you can
read from the server. By default, InputBufferSize is 512.

u.InputBufferSize
ans =
 512

In the next example, 1000 bytes will be read from the server. Configure the
InputBufferSize to hold 1000 bytes. Note, the InputBufferSize can be configured
only when the object is not connected to the server or instrument.

fclose(u);
u.InputBufferSize = 1000);
u.InputBufferSize
ans =
 1000

Now that the property is configured correctly, you can reopen the connection to the
server:

fopen(u);

Reading Binary Data

You use the fread function to read binary data from the server or instrument.

The fread function blocks the MATLAB command line until one of the following occurs:

• A timeout occurs as specified by the Timeout property
• The input buffer is filled
• The specified number of values is read (if DatagramTerminateMode is off)

7 Controlling Instruments Using TCP/IP and UDP

7-50

• A datagram has been received (if DatagramTerminateMode is on)

By default the fread function reads binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fread.

Note When performing a read operation, you should think of the received data in terms
of values rather than bytes. A value consists of one or more bytes. For example, one
uint32 value consists of four bytes.

You can read int32 binary data. For example, read one datagram consisting of 250
integers from the instrument or server.

fwrite(u, 1:250, 'int32');

data = fread(u, 250, 'int32');

The ValuesReceived property indicates the total number of values read from the
server.

u.ValuesReceived
ans =
 500

The DatagramTerminateMode property indicates whether a read operation should
terminate when a datagram is received. By default DatagramTerminateMode is on,
which means that a read operation terminates when a datagram is received. To read
multiple datagrams at once, you can set DatagramTerminateMode to off. In this
example, two datagrams are written to the echoserver.

fwrite(u, 1:125, 'int32');
fwrite(u, 1:125, 'int32');

Because DatagramTerminateMode is off, fread will read across datagram boundaries
until 250 integers have been received.

u.DatagramTerminateMode = 'off';
data = fread(u, 250, 'int32');
size(data)
ans =
 250

 Read and Write Binary Data over UDP

7-51

Cleanup

If you are finished with the UDP object, disconnect it from the server, remove it from
memory, and remove it from the workspace. If you are using the echo server, turn it off.

fclose(u);
delete(u);
clear u

echoudp('off');

7 Controlling Instruments Using TCP/IP and UDP

7-52

Asynchronous Read and Write Operations over UDP
This section provides details and examples exploring asynchronous read and write
operations with a UDP object.

In this section...
“Functions and Properties” on page 7-53
“Synchronous Versus Asynchronous Operations” on page 7-54
“Configuring and Connecting to the Server” on page 7-54
“Reading Data Asynchronously” on page 7-55
“Reading Data Asynchronously Using Continuous ReadAsyncMode” on page 7-55
“Reading Data Asynchronously Using Manual ReadAsyncMode” on page 7-56
“Defining an Asynchronous Read Callback” on page 7-57
“Using Callbacks During an Asynchronous Read” on page 7-58
“Writing Data Asynchronously” on page 7-58
“Cleanup” on page 7-59

Functions and Properties

These functions are associated with reading and writing text asynchronously:
Function Purpose
fprintf Write text to a server.
readasync Asynchronously read bytes from a server.
stopasync Stop an asynchronous read or write operation.

These properties are associated with reading and writing text asynchronously:
Property Purpose
BytesAvailable Indicates the number of bytes available in the input buffer.
TransferStatus Indicates what type of asynchronous operation is in progress.
ReadAsyncMode Indicates whether data is read continuously in the background or

whether you must call the readasync function to read data
asynchronously.

 Asynchronous Read and Write Operations over UDP

7-53

Additionally, you can use all the callback properties during asynchronous read and write
operations.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Synchronous Versus Asynchronous Operations

The object can operate in synchronous mode or in asynchronous mode. When the object is
operating synchronously, the read and write routines block the MATLAB command line
until the operation has completed or a timeout occurs. When the object is operating
asynchronously, the read and write routines return control immediately to the MATLAB
command line.

Additionally, you can use callback properties and callback functions to perform tasks as
data is being written or read. For example, you can create a callback function that
notifies you when the read or write operation has finished.

Configuring and Connecting to the Server

For this example, we will use an echo server that is provided with the toolbox. The echo
server allows you to experiment with the basic functionality of the UDP objects without
connecting to an actual device. An echo server is a service that returns to the sender's
address and port, the same bytes it receives from the sender.

echoudp('on', 8000);

You need to create a UDP object. In this example, create a UDP object associated with
the host 127.0.0.1 (your local machine), port 8000. In general, the host name or address
and the host port will be defined by the device and your network configuration.

u = udp('127.0.0.1', 8000);

Before you can perform a read or write operation, you must connect the UDP object to the
server with the fopen function.

fopen(u)

7 Controlling Instruments Using TCP/IP and UDP

7-54

If the object was successfully connected, its Status property is automatically configured
to open.

u.Status
ans =
 open

Note UDP ports can be shared by other applications to allow for multiple applications to
listen to the UDP datagrams on that port. This allows for the ability to listen to UDP
broadcasts on the same local port number in both MATLAB and other applications. You
can enable and disable this capability with a new property of the UDP object called
EnablePortSharing. See “Enable Port Sharing over UDP” on page 7-12.

Reading Data Asynchronously

You can read data asynchronously with the UDP object in one of these two ways:

• Continuously, by setting ReadAsyncMode to continuous. In this mode, data is
automatically stored in the input buffer as it becomes available from the server.

• Manually, by setting ReadAsyncMode to manual. In this mode, you must call the
readasync function to store data in the input buffer.

The fscanf, fread, fgetl and fgets functions are used to bring the data from the
input buffer into MATLAB. These functions operate synchronously.

Reading Data Asynchronously Using Continuous ReadAsyncMode

To read data continuously:

u.ReadAsyncMode = 'continuous';

To send a string to the echoserver:

fprintf(u, 'Hello net.');

Because the ReadAsyncMode property is set to continuous, the object is continuously
asking the server if any data is available. The echoserver sends data as soon as it
receives data. The data is then read from the server and is stored in the object's input
buffer.

 Asynchronous Read and Write Operations over UDP

7-55

u.BytesAvailable
ans =
 11

You can bring the data from the object's input buffer into the MATLAB workspace with
fscanf.

mystring = fscanf(u)
mystring =
 Hello net.

Reading Data Asynchronously Using Manual ReadAsyncMode

You can also read data manually.

u.ReadAsyncMode = manual;

Now, send a string to the echoserver.

fprintf(u, 'Hello net.');

Once the last fprintf function completes, the server begins sending data. However,
because ReadAsyncMode is set to manual, the object is not reading the data being sent
from the server. Therefore no data is being read and placed in the input buffer.

u.BytesAvailable
ans =
 0

The readasync function can asynchronously read the data from the server. The
readasync function returns control to the MATLAB command line immediately.

The readasync function takes two input arguments. The first argument is the server
object and the second argument is the size, the amount of data to be read from the
server.

The readasync function without a size specified assumes size is given by the
difference between the InputBufferSize property value and the BytesAvailable
property value. The asynchronous read terminates when:

• The terminator is read as specified by the Terminator property
• The specified number of bytes have been read

7 Controlling Instruments Using TCP/IP and UDP

7-56

• A timeout occurs as specified by the Timeout property
• The input buffer is filled

An error event will be generated if readasync terminates due to a timeout.

The object starts querying the server for data when the readasync function is called.
Because all the data was sent before the readasync function call, no data will be stored
in the input buffer and the data is lost.

When the UDP object is in manual mode (the ReadAsyncMode property is configured to
manual), data that is sent from the server to the computer is not automatically stored in
the input buffer of the UDP object. Data is not stored until readasync or one of the
blocking read functions is called.

Manual mode should be used when a stream of data is being sent from your server and
you only want to capture portions of the data.

Defining an Asynchronous Read Callback

You can configure a UDP object to notify you when a terminator has been read using the
dispcallback function.

u.ReadAsyncMode = 'continuous';
u.BytesAvailableFcn = 'dispcallback';

Note, the default value for the BytesAvailableFcnMode property indicates that the
callback function defined by the BytesAvailableFcn property will be executed when
the terminator has been read.

u.BytesAvailableFcnMode
ans =
 terminator

The callback function dispcallback displays event information for the specified event.
Using the syntax dispcallback(obj, event), it displays a message containing the
type of event, the name of the object that caused the event to occur, and the time the
event occurred.

callbackTime = datestr(datenum(event.Data.AbsTime));
fprintf(['A ' event.Type ' event occurred for ' obj.Name ' at '
 callbackTime '.\n']);

 Asynchronous Read and Write Operations over UDP

7-57

Using Callbacks During an Asynchronous Read
Once the terminator is read from the server and placed in the input buffer,
dispcallback is executed and a message is posted to the MATLAB command window
indicating that a BytesAvailable event occurred.

fprintf(u, 'Hello net.')
u.BytesAvailable
ans =
 11

data = fscanf(u)
data =
 Hello net.

If you need to stop an asynchronous read or write operation, you do not have to wait for
the operation to complete. You can use the stopasync function to stop the asynchronous
read or write.
stopasync(u);

The data that has been read from the server remains in the input buffer. You can use one
of the synchronous read functions to bring this data into the MATLAB workspace.
However, because this data represents the wrong data, the flushinput function is
called to remove all data from the input buffer.
flushinput(u);

Writing Data Asynchronously
You can perform an asynchronous write with the fprintf or fwrite functions by
passing 'async' as the last input argument.

Configure the object to notify you when an asynchronous write operation completes.
u.OutputEmptyFcn = 'dispcallback';
fprintf(u, 'Hello net.', 'async')

UDP sends and receives data in blocks that are called datagrams. Each time you write or
read data with a UDP object, you are writing or reading a datagram. In the example
below, a datagram with 11 bytes (10 ASCII bytes plus the LF terminator) will be sent to
the echoserver. Then the echoserver will send back a datagram containing the same 11
bytes.

7 Controlling Instruments Using TCP/IP and UDP

7-58

Configure the object to notify you when a datagram has been received.

u.DatagramReceivedFcn = 'dispcallback';
fprintf(u, 'Hello net.', 'async')

Note If you need to stop an asynchronous read or write operation, you do not have to
wait for the operation to complete. You can use the stopasync function to stop the
asynchronous read or write.

Cleanup

If you are finished with the UDP object, disconnect it from the server, remove it from
memory, and remove it from the workspace. If you are using the echo server, turn it off.

fclose(u);
delete(u);
clear u

echoudp('off');

 Asynchronous Read and Write Operations over UDP

7-59

Events and Callbacks

In this section...
“Event Types and Callback Properties” on page 7-60
“Responding To Event Information” on page 7-61
“Using Events and Callbacks” on page 7-63

Event Types and Callback Properties

The event types and associated callback properties supported by TCP/IP and UDP objects
are listed below.
TCP/IP and UDP Event Types and Callback Properties

Event Type Associated Properties
Bytes available BytesAvailableFcn

BytesAvailableFcnCount
BytesAvailableFcnMode

Datagram received DatagramReceivedFcn (UDP objects only)
Error ErrorFcn
Output empty OutputEmptyFcn
Timer TimerFcn

TimerPeriod

The datagram-received event is described below. For a description of the other event
types, refer to “Event Types and Callback Properties” on page 4-30.

Note You cannot use ASCII values larger than 127 characters with fgetl, fgets, or
BytesAvailableFnc. The functions are limited to 127 binary characters.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

7 Controlling Instruments Using TCP/IP and UDP

7-60

Datagram-Received Event

A datagram-received event is generated immediately after a complete datagram is
received in the input buffer.

This event executes the callback function specified for the DatagramReceivedFcn
property. It can be generated for both synchronous and asynchronous read operations.

Responding To Event Information

You can respond to event information in a callback function or in a record file. Event
information stored in a callback function uses two fields: Type and Data. The Type field
contains the event type, while the Data field contains event-specific information. As
described in “Creating and Executing Callback Functions” on page 4-32, these two fields
are associated with a structure that you define in the callback function header. Refer to
“Debugging: Recording Information to Disk” on page 17-5 to learn about storing event
information in a record file.

The event types and the values for the Type and Data fields are given below.

 Events and Callbacks

7-61

TCP/IP and UDP Event Information

Event Type Field Field Value
Bytes available Type BytesAvailable

Data.AbsTime day-month-year
hour:minute:second

Datagram received Type DatagramReceived
Data.AbsTime day-month-year

hour:minute:second
Data.DatagramAddress IP address character vector
Data.DatagramLength Number of bytes received as

double
Data.DatagramPort Port number of sender as double

Error Type Error
Data.AbsTime day-month-year

hour:minute:second
Data.Message An error string

Output empty Type OutputEmpty
Data.AbsTime day-month-year

hour:minute:second
Timer Type Timer

Data.AbsTime day-month-year
hour:minute:second

The Data field values are described below.

AbsTime Field

AbsTime is defined for all events, and indicates the absolute time the event occurred.
The absolute time is returned using the MATLAB Command window clock format.

day-month-year hour:minute:second

DatagramAddress Field

DatagramAddress is the IP address of the datagram sender.

7 Controlling Instruments Using TCP/IP and UDP

7-62

DatagramLength Field

DatagramLength is the length of the datagram in bytes.

DatagramPort Field

DatagramPort is the sender's port number from which the datagram originated.

Message Field

Message is used by the error event to store the descriptive message that is generated
when an error occurs.

Using Events and Callbacks

This example extends “UDP Communication Between Two Hosts” on page 7-14 to include
a datagram received callback. The callback function is instrcallback, which displays
information to the command line indicating that a datagram has been received.

The following command configures the callback for the UDP object u2.

u2.DatagramReceivedFcn = @instrcallback;

When a datagram is received, the following message is displayed.

DatagramReceived event occurred at 10:26:20 for the object:
UDP-doetom.dhpc.
25 bytes were received from address 192.168.1.12, port 8844.

Note You cannot use ASCII values larger than 127 characters with fgetl, fgets, or
BytesAvailableFnc. The functions are limited to 127 binary characters.

 Events and Callbacks

7-63

Communicate Using TCP/IP Server Sockets

In this section...
“About Server Sockets” on page 7-64
“Example” on page 7-64

About Server Sockets

Support for Server Sockets is available, using the NetworkRole property on the TCP/IP
interface. This support is for a single remote connection. You can use this connection to
communicate between a client and MATLAB, or between two instances of MATLAB.

For example, you might collect data such as a waveform into one instance of MATLAB,
and then want to transfer it to another instance of MATLAB.

Note The use of the server socket on either the client or server side should be done in
accordance with the license agreement as it relates to your particular license option and
activation type. If you have questions, you should consult with the administrator for your
license or your legal department.

This is intended for use behind a firewall on a private network.

Note that while a server socket is waiting for a connection after calling fopen, the
MATLAB processing thread is blocked. To stop fopen or to stop listening for connections,
and restore the use of MATLAB, type Ctrl+C at the MATLAB command line.

Example

To use this feature it is necessary to set the NetworkRole property in the tcpip
interface. It uses two values, client and server, to establish a connection as the client
or the server. The server sockets feature supports binary and ASCII transfers.

The following example shows how to connect two MATLAB sessions on the same
computer, showing the example code for each session. To use two different computers,
replace 'localhost' with the IP address of the server in the code for Session 2. Using
'0.0.0.0' as the IP address means that the server will accept the first machine that tries to

7 Controlling Instruments Using TCP/IP and UDP

7-64

connect. To restrict the connections that will be accepted, replace '0.0.0.0' with the
address of the client in the code for Session 1.

Session 1: MATLAB Server

Accept a connection from any machine on port 30000.

t = tcpip('0.0.0.0', 30000, 'NetworkRole', 'server');

Open a connection. This will not return until a connection is received.

fopen(t);

Read the waveform and confirm it visually by plotting it.

data = fread(t, t.BytesAvailable);
plot(data);

Session 2: MATLAB Client

This code is running on a second copy of MATLAB.

Create a waveform and visualize it.

data = sin(1:64);
plot(data);

Create a client interface and open it.

t = tcpip('localhost', 30000, 'NetworkRole', 'client');
fopen(t)

Write the waveform to the server session.

fwrite(t, data)

 Communicate Using TCP/IP Server Sockets

7-65

Controlling Instruments Using Bluetooth

• “Bluetooth Interface Overview” on page 8-2
• “Configuring Bluetooth Communication” on page 8-3
• “Transmitting Data Over the Bluetooth Interface” on page 8-10
• “Using Bluetooth Interface in Test & Measurement Tool” on page 8-14
• “Using Events and Callbacks with Bluetooth” on page 8-15
• “Bluetooth Interface Usage Guidelines” on page 8-16

8

Bluetooth Interface Overview
In this section...
“Bluetooth Communication” on page 8-2
“Supported Platforms for Bluetooth” on page 8-2

Bluetooth Communication

The Instrument Control Toolbox Bluetooth interface lets you connect to devices over the
Bluetooth interface and to transmit and receive ASCII and binary data. Instrument
Control Toolbox supports the Bluetooth Serial Port Profile (SPP). You can identify any
SPP Bluetooth device and establish a two-way connection with that device.

Bluetooth is an open wireless technology standard for exchanging data over short
distances using short wavelength radio transmissions from fixed and mobile devices
using a packet-based protocol. Bluetooth provides a secure way to connect and exchange
information between devices such as Lego Mindstorm NXT robots, USB Bluetooth
adaptors (dongles), wireless sensors, mobile phones, faxes, laptops, computers, printers,
GPS receivers, etc.

Specifications about the Bluetooth standard are at the web site of the Bluetooth Special
Interest Group:

https://www.bluetooth.com/specifications/adopted-specifications

Supported Platforms for Bluetooth

The Bluetooth interface is supported on these platforms:

• macOS
• Microsoft Windows 64-bit

8 Controlling Instruments Using Bluetooth

8-2

https://www.bluetooth.com/specifications/adopted-specifications

Configuring Bluetooth Communication

In this section...
“Discovering Your Device” on page 8-3
“Viewing Bluetooth Device Properties” on page 8-5

Discovering Your Device

Instrument Control Toolbox can communicate with Bluetooth devices via an adaptor. In
this example, a USB Bluetooth adaptor is plugged into the computer. It can identify
Bluetooth devices within range when queried. In order to communicate with
instruments, you need to perform a pairing in the adaptor software. Note that some
devices, such as many laptop computers, do not need to use an adaptor since they have
one built in.

The following shows the software interface of an adaptor where two of the devices in
range have been paired – a smart phone with Bluetooth enabled, and a Lego Mindstorm
NXT robot. As you can see, the “friendly name” or display name of the smart phone is
simply iPhone and the name of the NXT robot is C3PO. In the Instrument Control
Toolbox this friendly name is the Bluetooth RemoteName property.

 Configuring Bluetooth Communication

8-3

To see the devices in the Instrument Control Toolbox, use the instrhwinfo function on
the Bluetooth interface, called Bluetooth.

instrhwinfo returned a cell array of five Bluetooth devices that are in the range of the
adaptor on the computer running Instrument Control Toolbox. Then indexing into the
RemoteNames property shows the five devices. You can see that iPhone and C3PO are
shown in the list.

8 Controlling Instruments Using Bluetooth

8-4

Notice that one of the other devices shows an empty character vector for RemoteName.
That means that device does not have a friendly name associated with it. To
communicate with that device, you need to use the RemoteID property.

The RemoteIDs are shown in the same order as the RemoteNames, so the fourth ID in
the list, '0021BA74F3DD', could be used for the device that shows no RemoteName. You
can use either RemoteName or RemoteID to communicate with a device.

Examples of communicating with a device are in “Transmitting Data Over the Bluetooth
Interface” on page 8-10.

Viewing Bluetooth Device Properties
This example looks at the NXT robot discovered in the previous section. Using the
instrhwinfo function on the specific device using RemoteName shows this:

 Configuring Bluetooth Communication

8-5

If you use the instrhwinfo function on the specific device using the RemoteID, it shows
the following:

In the case using the RemoteID, you can see that the ObjectConstructorName is
actually the device’s Uniform Resource Identifier (URI).

Whether you use the RemoteName or the RemoteID to see the device’s properties, you
can see that the device has only one channel. Create a Bluetooth object bt using the
RemoteName and Channel. Then display the state of that object using the disp function.

8 Controlling Instruments Using Bluetooth

8-6

The status is closed because you have not yet opened the connection to the object.

Use the get function to see the device properties.

 Configuring Bluetooth Communication

8-7

8 Controlling Instruments Using Bluetooth

8-8

The BLUETOOTH specific properties section shows properties that are specific to
the Bluetooth interface. You can see it is using channel 1. The profile is SPP, which is
the Serial Port Profile – that is the Bluetooth profile that Instrument Control Toolbox
supports.

The RemoteName and RemoteID properties are the names that are used to communicate
with the device, as shown previously.

The ReadAsyncMode and Terminator properties are the same as the Serial Port
properties of the same name. For details, see the properties documentation.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

 Configuring Bluetooth Communication

8-9

Transmitting Data Over the Bluetooth Interface
You can read and write both text data (ASCII based) and binary data. For text data, use
the fscanf and fprintf functions. For binary data, use the fread and fwrite
functions.

This example uses the LEGO Mindstorm NXT robot with a RemoteName of C3PO that
you discovered in “Viewing Bluetooth Device Properties” on page 8-5. See that section for
more details on device discovery and viewing properties.

To communicate with the NXT device:

1 Determine what Bluetooth devices are accessible from your computer.

instrhwinfo('Bluetooth')
2 View the device list using the RemoteNames property.

ans.RemoteNames
3 In this case, C3PO is the remote name of the NXT robot and is shown in the output.

Display the information about this device using the Bluetooth interface and the
RemoteName property.

instrhwinfo('Bluetooth','C3PO')

The Instrument Control Toolbox displays the device information.

4 Create a Bluetooth object called bt using channel 1 of the NXT device.

bt = Bluetooth('C3PO', 1);
5 Connect to the device.

8 Controlling Instruments Using Bluetooth

8-10

fopen(bt)
6 Send a message to the remote device using the fwrite function.

In this example, specific characters are sent to the device that this particular device
(the NXT robot C3PO) understands. You can write to the device, then query the
object, as shown here, to see that the values were sent.

7 Read data from the remote device using the fread function.

You can see that ValuesSent is 4, which are the four characters sent in fwrite
(2,0,1,155). This also shows that 35 bytes are available. So you can then use the
fread function and give it 35 bytes to read the characters from the remote device.

 Transmitting Data Over the Bluetooth Interface

8-11

The device returns the characters shown here. The returned characters are C3PO,
which is the RemoteName of the device. That was a reply to the instructions that
were sent to it. See the documentation for your device for this type of device-specific
communication information.

8 Clean up by deleting and clearing the object.

fclose(bt);
clear('bt');

Note This example uses the fread and fwrite functions. To read and write text-based
data, use the fscanf and fprintf functions.

Note You can do asynchronous reading and writing of data using the Bluetooth interface.
This is similar to the same operations using the Instrument Control Toolbox Serial
interface. For more information, see “Asynchronous Write and Read Operations” on page
6-20.

Other Functionality

The following functions can be used with the Bluetooth object.
Function Purpose
binblockwrite Write binblock data to instrument
fgetl Read line of text from instrument and discard terminator
flushinput Remove data from input buffer
fopen Connect interface object to instrument
fread Read binary data from instrument
fwrite Write binary data to instrument

8 Controlling Instruments Using Bluetooth

8-12

Function Purpose
methods Class method names and descriptions
readasync Read data asynchronously from instrument
scanstr Read data from instrument, format as text, and parse
binblockread Read binblock data from instrument
fclose Disconnect interface object from instrument
fgets Read line of text from instrument and include terminator
flushoutput Remove data from output buffer
fprintf Write text to instrument
fscanf Read data from instrument, and format as text
query Write text to instrument, and read data from instrument
record Record data and event information to file
stopasync Stop asynchronous read and write operations

For more information about these functions, see the functions documentation.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

 Transmitting Data Over the Bluetooth Interface

8-13

Using Bluetooth Interface in Test & Measurement Tool
The Bluetooth interface is supported for use in the Test & Measurement Tool. The same
functionality is available there as in the core toolbox, as described in “Bluetooth Interface
Overview” on page 8-2.

To use the Bluetooth support in the Test & Measurement Tool, select the Bluetooth
node in the instrument tree and right-click Scan for bluetooth devices. For help on
using it in the Test & Measurement Tool, see the Help within the tool by selecting the
Bluetooth node in the tree and reading the Help panel.

Note When using the Bluetooth support in the Test & Measurement Tool, please note
that you may need to restart your device after you have done the scan. For any Lego
Mindstorm robot to be identified correctly, it has to be restarted after scanning. You may
also have to restart other Bluetooth devices after the scan as well.

Troubleshooting

If you are having trouble using the Bluetooth interface in the Test & Measurement Tool,
try these steps.

• Check that the Bluetooth device supports the Serial Port Profile (SPP). We do not
support other Bluetooth profiles such as File Transfer Profile (FTP).

• Make sure that the Bluetooth service on the device is turned on.
• Make sure that the Bluetooth device is paired with your computer.
• If you are using a Lego Mindstorm NXT brick, note that the NXT brick has to be

restarted after scanning for Bluetooth devices from the Test & Measurement Tool.
• If you still cannot connect to the Bluetooth device, try unplugging and replugging the

Bluetooth adaptor.

Note For further information on using the Bluetooth interface, see “Bluetooth Interface
Usage Guidelines” on page 8-16.

8 Controlling Instruments Using Bluetooth

8-14

Using Events and Callbacks with Bluetooth
You can enhance the power and flexibility of your instrument control application by
using events. An event occurs after a condition is met, and might result in one or more
callbacks.

While the instrument object is connected to the instrument, you can use events to display
a message, display data, analyze data, and so on. Callbacks are controlled through
callback properties and callback functions. All event types have an associated callback
property. Callback functions are MATLAB functions that you construct to suit your
specific application needs.

You execute a callback when a particular event occurs by specifying the name of the
callback function as the value for the associated callback property.

The Bluetooth event types and associated callback properties are described below.
Event Type Associated Property Name
Bytes-available BytesAvailableFcn

BytesAvailableFcnCount

BytesAvailableFcnMode
Error ErrorFcn
Output-empty OutputEmptyFcn
Timer TimerFcn

TimerPeriod

These are the same callbacks that are commonly used by other interfaces in the
Instrument Control Toolbox.

 Using Events and Callbacks with Bluetooth

8-15

Bluetooth Interface Usage Guidelines
These guidelines may be relevant to your use of this feature.

On Windows 7 64-bit platforms, you can use only one Bluetooth adaptor at a time. If you
connect another adaptor, it will fail with a “Device Driver Installation Failed” error.

Some adaptors support multiple devices:

• The Bluetooth adaptor that comes with the LEGO Mindstorm kit (Abe – Model:
UB22S) supports connection to only one Bluetooth device at a time.

• IO Gear – Models GBU421 and GBU311 support communication with multiple
Bluetooth devices.

• Targus – Model ACB10US supports communication with multiple Bluetooth devices.
• Motorola – Model SYN1244B supports communication with multiple Bluetooth

devices.
• D-Link – Model DBT-120 supports communication with multiple Bluetooth devices.

If a Bluetooth adaptor is removed and a different one plugged in, all Bluetooth devices
have to be paired again with your PC. If the same adaptor is removed and plugged back
in, then you do not need to pair the devices again. If another adaptor of the same vendor
is plugged in, then the devices which had been cached when that adaptor was used are
seen in the cache.

If a Bluetooth device is already cached, but it is OFF when MATLAB is started, and if
instrhwinfo is called on this device, then ObjectConstructorName and Channel are
returned as a null character vector. If a Bluetooth device is already cached and is ON
when MATLAB is started, and it is later switched OFF, if instrhwinfo is called on this
device, then ObjectConstructorName and Channel return the correct values.

If you create a Bluetooth object for any Bluetooth device and the connection is open, and
then the device goes out of range, then the status of the object would still be open. When
the device comes into range again, you need to fclose the object and fopen it again for
communication to continue.

If you create a Bluetooth object, for a Lego Mindstorm NXT robot for example, and the
connection is open, and then the batteries of robot run out, then the status of the object
would still be open. If you then replace the batteries, you need to fclose the object and
fopen it again for communication to continue.

8 Controlling Instruments Using Bluetooth

8-16

When using the Bluetooth support in the Test & Measurement Tool, please note that you
may need to restart your device after you have done the scan. For any Lego Mindstorm
robot to be identified correctly, it has to be restarted after scanning. You may also have
to restart other Bluetooth devices after the scan as well.

 Bluetooth Interface Usage Guidelines

8-17

Controlling Instruments Using I2C

• “I2C Interface Overview” on page 9-2
• “Configuring I2C Communication” on page 9-4
• “Transmitting Data Over the I2C Interface” on page 9-8
• “Using Properties on an I2C Object” on page 9-14
• “I2C Interface Usage Requirements and Guidelines” on page 9-17

9

I2C Interface Overview
In this section...
“I2C Communication” on page 9-2
“Supported Platforms for I2C” on page 9-2

I2C Communication
I2C, or Inter-Integrated Circuit, is a chip-to-chip interface supporting two-wire
communication. Instrument Control Toolbox I2C support lets you open connections with
individual chips and to read and write over the connections to individual chips.

The Instrument Control Toolbox I2C interface lets you do chip to chip communication
using an Aardvark or NI-845x host adaptor. Some applications of this interface include
communication with SPD EEPROM and NVRAM chips, communication with SMBus
devices, controlling accelerometers, accessing low-speed DACs and ADCs, changing
settings on color monitors using the display data channel, changing sound volume in
intelligent speakers, reading hardware monitors and diagnostic sensors, visualizing data
sent from an I2C sensor, and turning on or off the power supply of system components.

The primary use cases involve the fread and fwrite functions. To identify I2C devices
in the Instrument Control Toolbox, use the instrhwinfo function on the I2C interface,
called i2c.

Supported Platforms for I2C
You need to have either a Total Phase Aardvark host adaptor or a NI-845x adaptor board
installed to use the i2c interface. The following sections contain the supported platforms
for each option.

Using Aardvark

The I2C interface is supported on these platforms when used with the Aardvark host
adaptor:

• Linux – The software works with Red Hat Enterprise Linux 4 and 5 with kernel 2.6.
It may also be successful with SuSE and Ubuntu distributions.

• macOS 64-bit – The software is supported on Intel versions of macOS 10.5 Leopard
and 10.6 Snow Leopard.

9 Controlling Instruments Using I2C

9-2

• Microsoft Windows 64-bit

Using NI-845x

The I2C interface is supported on these platforms when used with the NI-845x host
adaptor:

• Microsoft Windows 64-bit

 I2C Interface Overview

9-3

Configuring I2C Communication
You need to have either a Total Phase Aardvark host adaptor or a NI-845x adaptor board
installed to use the i2c interface. The following sections describe configuration for each
option.

Configuring Aardvark

To use the I2C interface with the Aardvark adaptor, you must download the Hardware
Support Package to obtain the necessary files. You must also download the USB device
driver from the vendor.

If you do not have the Aardvark driver installed, see “Install the Total Phase Aardvark
I2C/SPI Interface Support Package” on page 15-14.

The aardvark.dll file that comes with the Total Phase Aardvark adaptor board must be
available in one of the following locations for use on Windows platforms.

• The location where MATLAB was started from (Bin folder).
• The MATLAB current folder (PWD).
• The Windows folder C:\winnt or C:\windows.
• The folders listed in the PATH environment variable.

Ensure that the Aardvark adaptor is installed properly.

Look at the adaptor properties.

instrhwinfo('i2c', 'Aardvark')

ans =

 AdaptorDllName: [1x127 char]
 AdaptorDllVersion: 'Version 3.0.0'

9 Controlling Instruments Using I2C

9-4

 AdaptorName: 'aardvark'
 InstalledBoardIds: 0
 ObjectConstructorName: 'i2c('aardvark', BoardIndex, RemoteAddress);'
 VendorDllName: 'aardvark.dll'
 VendorDriverDescription: 'Total Phase I2C Driver'

You can create an I2C object using the i2c function. The example in the next section
uses an I2C object called eeprom that communicates to an EEPROM chip.

eeprom = i2c('aardvark',0,hex2dec('50'));

You can then display the object properties.

You can see that the communication settings properties reflect what was used to create
the object – BoardIndex of 0 and RemoteAddress of 50h. For information about other
properties, see “Using Properties on an I2C Object” on page 9-14.

 Configuring I2C Communication

9-5

Configuring NI-845x

To use the I2C interface with the NI-845x adaptor, you must download the Hardware
Support Package to obtain the latest driver, if you do not already have the driver
installed. If you already have the latest driver installed, you do not need to download this
Support Package.

If you do not have the NI-845x driver installed, see “Install the NI-845x I2C/SPI
Interface Support Package” on page 15-12.

Ensure that the NI-845x adaptor is installed properly.

Look at the NI-845x adaptor properties.

You can create an I2C object using the i2c function.
i2cobj = i2c('NI845x', 0, '10h');

You can then display the object properties.

9 Controlling Instruments Using I2C

9-6

You can see that the communication settings properties reflect what was used to create
the object – BoardIndex of 0 and RemoteAddress of 10h. For information about other
properties, see “Using Properties on an I2C Object” on page 9-14.

 Configuring I2C Communication

9-7

Transmitting Data Over the I2C Interface
The typical workflow involves adaptor discovery, connection, communication, and
cleanup. Discovery can be done only at the adaptor level. You need to have either a Total
Phase Aardvark host adaptor or a NI-845x adaptor board installed to use the i2c
interface.

Aardvark Example

This example shows how to communicate with an EEPROM chip on a circuit board, with
an address of 50 hex and a board index of 0, using the Aardvark adaptor.

To communicate with an EEPROM chip:

1 Ensure that the Aardvark adaptor is installed so that you can use the i2c interface.

instrhwinfo('i2c')

2 Look at the adaptor properties.
instrhwinfo('i2c', 'Aardvark')

ans =

 AdaptorDllName: [1x127 char]
 AdaptorDllVersion: 'Version 3.0.0'
 AdaptorName: 'aardvark'
 InstalledBoardIds: 0
 ObjectConstructorName: 'i2c('aardvark', BoardIndex, RemoteAddress);'
 VendorDllName: 'aardvark.dll'
 VendorDriverDescription: 'Total Phase I2C Driver'

Make sure that you have the Aardvark software driver installed and that the
aardvark.dll is on your MATLAB path. For details, see “I2C Interface Usage
Requirements and Guidelines” on page 9-17.

9 Controlling Instruments Using I2C

9-8

3 Create the I2C object called eeprom, using these properties:

% Vendor = aardvark
% BoardIndex = 0
% RemoteAddress = 50h

eeprom = i2c('aardvark',0,'50h');

You must provide these three parameters to create the object. Read the
documentation of the chip in order to know what the remote address is.

Tip You can also see what the remote address of the chip is by scanning for
instruments in the Test & Measurement Tool. In the tool, right-click the I2C node
and select Scan for I2C adaptors. Any chips found by the scan is listed in the
hardware tree. The listing includes the remote address of the chip.

4 Connect to the chip.

fopen(eeprom);
5 Write 'Hello World!' to the EEPROM. Data is written page-by-page in I2C. Each

page contains eight bytes. The page address needs to be mentioned before every byte
of data written.

The first byte of the string 'Hello World!' is 'Hello Wo'. Its page address is 0.

fwrite(eeprom,[0 'Hello Wo']);

The second byte of the string 'Hello World!' is 'rld!'. Its page address is 8.

fwrite(eeprom,[8 'rld!']);
6 Read data back from the chip using the fread function.

A zero needs to be written to the i2c object, to start reading from the first byte of
first page.

fwrite(eeprom,0);

char(fread(eeprom,16))'

The chip returns the characters it was sent, as shown here.

 Transmitting Data Over the I2C Interface

9-9

7 Clean up by deleting and clearing the object.

fclose(eeprom);
delete(eeprom);
clear('eeprom');

NI-845x Example

This example shows how to communicate with an Analog Devices® ADXL345 sensor chip
on a circuit board, using an address of 53 hex and a board index of 0 on a NI-845x
adaptor. In this case, the NI-845x adaptor board is plugged into the computer (via the
USB port), and a circuit board containing the sensor chip is connected to the host adaptor
board via wires. Note that the circuit has external pullups, as the NI-8451 adaptor used
in this example does not have internal pullups.

To communicate with a sensor chip:

1 Ensure that the NI-845x adaptor is installed so that you can use the i2c interface.

2 Look at the NI-845x adaptor properties.

9 Controlling Instruments Using I2C

9-10

Make sure that you have the NI-845x software driver installed. For details, see “I2C
Interface Usage Requirements and Guidelines” on page 9-17.

3 Create the I2C object called i2cobj, using these properties:

% Vendor = NI845x
% BoardIndex = 0
% RemoteAddress = 53h

i2cobj = i2c('NI845x', 0, '53h');

You must provide these three parameters to create the object. Read the
documentation of the chip in order to know what the remote address is.

Tip You can also see what the remote address of the chip is by scanning for
instruments in the Test & Measurement Tool. In the tool, right-click the I2C node
and select Scan for I2C adaptors. Any chips found by the scan is listed in the
hardware tree. The listing includes the remote address of the chip.

4 Connect to the chip.

fopen(i2cobj)
5 Write to the sensor chip. Read the documentation or data sheet of the chip in order

to know what the remote address is and other information about the chip. Usually
chip manufacturers provide separate read and write addresses. The adaptor boards

 Transmitting Data Over the I2C Interface

9-11

only take one address (the read address) and handle conversions to read and write
addresses.

In this case, the chip’s device ID register is at address 0, so you need to write a 0 to
the chip indicating you would like to read or write to the register.

fwrite(i2cobj, 0)
6 Read data back from the chip’s device ID register using the fread function. Reading

1 byte of data returns the device ID registry. In the case of this chip, the read-only
device ID register value is 229. Therefore, that is what is returned when you send
the byte.

fread(i2cobj, 1)

ans =

 229
7 Clean up by deleting and clearing the object.

fclose(i2cobj);
delete(i2cobj);
clear('i2cobj');

Other Functionality

You can use these functions with the i2c object.
Function Purpose
fopen Connect interface object to instrument.
fread Read binary data from instrument.
fwrite Write binary data to instrument.
methods Names and descriptions of functions that can be used with i2c

objects.
fclose Disconnect interface object from instrument.
record Record data and event information to file.
propinfo Display instrument object property information.

For more information about these functions, see the functions documentation.

9 Controlling Instruments Using I2C

9-12

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

 Transmitting Data Over the I2C Interface

9-13

Using Properties on an I2C Object
You can use the get function on the i2c object to see the available properties. In the
first example shown in “Transmitting Data Over the I2C Interface” on page 9-8, which
uses the Aardvark board, the syntax would be:

get(eeprom)

The following shows the output of the get from that example.

For the example using a NI-845x board, as shown in the NI-845x section of “Configuring
I2C Communication” on page 9-4, you see the following output.

get(i2cobj)

Interface-specific properties that can be used with the i2c object include:

9 Controlling Instruments Using I2C

9-14

Property Description
BitRate Must be a positive, nonzero value specified in kHz. The

adaptor and chips determine the rate. The default is 100 kHz
for both the Aardvark and NI-845x adaptors.

TargetPower Aardvark only. Can be specified as none or both. The value
both means to power both lines, if supported. The value
none means power no lines, and is the default value.

PullupResistors Can be specified as none or both. The value both enables 2k
pullup resistors to protect hardware in the I2C device, if
supported. This is the default value.

Devices may differ in their use of pullups. The Aardvark
adaptor and the NI-8452 adaptor have internal pullup
resistors to tie both bus lines to VDD and can be
programmatically set. The NI-8451 does not have internal
pullup resistors that can be programmatically set, and so
require external pullups. Consult your device documentation
to ensure that the correct pullups have been used.

BoardSerial Unique identifier of the I2C master communication device.
Vendor Use to create i2c object. Must be set to aardvark, for use

with Aardvark adaptor, or NI845x for use with the NI-845x
adaptor.

BoardIndex Use to create i2c object. Specifies the board index of the
hardware. Usually set to 0.

RemoteAddress Use to create i2c object. Specifies the remote address of the
hardware. Specified as a character vector when you create
the i2c object. For example, to specify the remote address of
50 hex, use '50h'.

Read the documentation of the chip in order to know what
the remote address is. You can also see what the remote
address of the chip is by scanning for instruments in the Test
& Measurement Tool. In the tool, right-click the I2C node
and select Scan for I2C adaptors. Any chips found by the
scan is listed in the hardware tree. The listing includes the
remote address of the chip.

 Using Properties on an I2C Object

9-15

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

All the I2C interface-specific properties work for both adaptor boards, except for
TargetPower, which is Aardvark only.

The properties Vendor, BoardIndex, and RemoteAddress are used when you create the
object, as shown in “Transmitting Data Over the I2C Interface” on page 9-8. The property
BoardSerial is read-only. The BitRate, TargetPower, and PullupResistors
properties can be set at any time after the object is created.

After you create the I2C object, you can set properties on it, as follows:

i2cobj.BitRate = 75

In this case, i2cobj is the name of the object, and you are changing the BitRate from
the default of 100 kHz to 75 kHz.

The other two properties that you can set are character vectors, so they would be set as
follows:

i2cobj.'TargetPower' = 'both'

In this case, i2cobj is the name of the object, and you are changing the TargetPower
from the default of none to both. Note that TargetPower is only available using the
Aardvark board, and does not apply to the NI-845x board.

9 Controlling Instruments Using I2C

9-16

I2C Interface Usage Requirements and Guidelines
The I2C interface does not support asynchronous behavior. Therefore, functions such as
fprintf, fscanf, and query do not work. Use fread and fwrite to communicate
using this interface.

You need to have either a Total Phase Aardvark host adaptor or a NI-845x adaptor board
installed to use the i2c interface. The following sections describe requirements for each
option.

Aardvark-specific Requirements

To use the I2C interface with the Aardvark adaptor, you must download the Hardware
Support Package to obtain the necessary files. You must also download the USB device
driver from the vendor.

If you do not have the Aardvark driver installed, see “Install the Total Phase Aardvark
I2C/SPI Interface Support Package” on page 15-14.

You must install the Aardvark Software API and Share Library appropriate for your
operating system.

The aardvark.dll file that comes with the Total Phase Aardvark adaptor board must be
available in one of the following locations for use on Windows platforms.

• The location where MATLAB was started from (Bin folder).
• The MATLAB current folder (PWD).
• The Windows folder C:\winnt or C:\windows.
• The folders listed in the PATH environment variable.

The aardvark.so file that comes with the Total Phase Aardvark adaptor board must be in
your MATLAB path for use on Linux platforms.

If you repower your Aardvark board, set the GPIO pins to output to get communication
with a device to work. By default they are configured as input.

NI-845x-specific Requirements

To use the I2C interface with the NI-845x adaptor, you must download the Hardware
Support Package to obtain the latest driver, if you do not already have the driver

 I2C Interface Usage Requirements and Guidelines

9-17

installed. If you already have the latest driver installed, you do not need to download this
Support Package.

If you do not have the NI-845x driver installed, see “Install the NI-845x I2C/SPI
Interface Support Package” on page 15-12.

Devices may differ in their use of pullups. The NI-8452 has internal pullup resistors to
tie both bus lines to VDD and can be programmatically set. The NI-8451 does not have
internal pullup resistors that can be programmatically set, and so require external
pullups. Consult your device documentation to ensure that the correct pullups have been
used.

9 Controlling Instruments Using I2C

9-18

Controlling Instruments Using SPI

• “SPI Interface Overview” on page 10-2
• “Configuring SPI Communication” on page 10-4
• “Transmitting Data Over the SPI Interface” on page 10-9
• “Using Properties on the SPI Object” on page 10-17
• “SPI Interface Usage Requirements and Guidelines” on page 10-21

10

SPI Interface Overview

In this section...
“SPI Communication” on page 10-2
“Supported Platforms for SPI” on page 10-2

SPI Communication

SPI, or Serial Peripheral Interface, is a synchronous serial data link standard that
operates in full duplex mode. It is commonly used in the test and measurement field.
Typical uses include communicating with micro controllers, EEPROMs, A2D devices,
embedded controllers, etc.

Instrument Control Toolbox SPI support lets you open connections with individual chips
and to read and write over the connections to individual chips using an Aardvark or
NI-845x host adaptor.

The primary uses for the spi interface involve the write, read, and writeAndRead
functions for synchronously reading and writing binary data. To identify SPI devices in
Instrument Control Toolbox, use the instrhwinfo function on the SPI interface, called
spi.

Supported Platforms for SPI

You need to have either a Total Phase Aardvark host adaptor or an NI-845x adaptor
board installed to use the spi interface. The following sections contain the supported
platforms for each option.

Using Aardvark

The SPI interface is supported on these platforms when used with the Aardvark host
adaptor:

• Linux — Red Hat® Enterprise Linux 4 and 5 with kernel 2.6, and possibly SUSE®
and Ubuntu distributions.

• macOS 64-bit — Intel® versions of macOS 10.5 Leopard, 10.6 Snow Leopard, 10.7
Lion, and 10.8 Mountain Lion.

10 Controlling Instruments Using SPI

10-2

• Microsoft Windows 64-bit

Using NI-845x

The SPI interface is supported on these platforms when used with the NI-845x host
adaptor:

• Microsoft Windows 64-bit

 SPI Interface Overview

10-3

Configuring SPI Communication
You must have a Total Phase Aardvark host adaptor or an NI-845x adaptor board
installed to use the spi interface.

Configuring Aardvark

To use the SPI interface with the Aardvark adaptor, you must download the Hardware
Support Package to obtain the necessary files. You must also download the USB device
driver from the vendor.

If you do not have the Aardvark driver installed, see “Install the Total Phase Aardvark
I2C/SPI Interface Support Package” on page 15-14.

The aardvark.dll file that comes with the Total Phase Aardvark adaptor board must
be available in one of these locations for use on Windows platforms:

• The location where MATLAB was started from (bin folder)
• The MATLAB current folder (PWD)
• The Windows folder C:\winnt or C:\windows
• The folders listed in the path environment variable

Ensure that the Aardvark adaptor is installed properly.

Look at the adaptor properties.

10 Controlling Instruments Using SPI

10-4

Create a SPI object using the spi function. This example uses a SPI object called S that
communicates to an EEPROM chip. Create the object using the BoardIndex and Port
numbers, which are 0 in both cases.

S = spi('aardvark', 0, 0);

Display the object properties.

 Configuring SPI Communication

10-5

The communication settings properties reflect what was used to create the object –
BoardIndex of 0 and Port of 0. For information about other properties, see “Using
Properties on the SPI Object” on page 10-17.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Configuring NI-845x

To use the SPI interface with the NI-845x adaptor, download the hardware support
package to obtain the latest driver, if you do not already have the driver installed.

10 Controlling Instruments Using SPI

10-6

If you do not have the NI-845x driver installed, see “Install the NI-845x I2C/SPI
Interface Support Package” on page 15-12 to install it.

Ensure that the NI-845x adaptor is installed properly.

Look at the NI-845x adaptor properties.

Create a SPI object using the spi function. The example in the next section uses a SPI
object called s2 that communicates with an EEPROM chip. Create the object using the
BoardIndex and Port numbers, which are 0 in both cases.

s2 = spi('ni845x', 0, 0);

Display the object properties.

 Configuring SPI Communication

10-7

The communication settings properties reflect what was used to create the object –
BoardIndex of 0 and Port of 0. For information about other properties, see “Using
Properties on the SPI Object” on page 10-17.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

10 Controlling Instruments Using SPI

10-8

Transmitting Data Over the SPI Interface
The typical workflow for transmitting data over the SPI interface involves adaptor
discovery, connection, communication, and cleanup. Discovery can be done only at the
adaptor level. You must have a Total Phase Aardvark adaptor or an NI-845x adaptor
board installed to use the spi interface.

Transmit Data Over SPI Using Aardvark

This example shows how to communicate with an EEPROM chip on a circuit board, with
a board index of 0 and using port 0.

1 Ensure that the Aardvark adaptor is installed so that you can use the spi interface.

2 Look at the adaptor properties.

Make sure that you have the Aardvark software driver installed and that the
aardvark.dll is on your MATLAB path. For details, see “SPI Interface Usage
Requirements and Guidelines” on page 10-21.

 Transmitting Data Over the SPI Interface

10-9

3 Create the SPI object called S, using these properties:

% Vendor = aardvark
% BoardIndex = 0
% Port = 0

S = spi('aardvark', 0, 0);

You must provide these three parameters to create the object.
4 Look at the object properties.

When you create the spi object, default communication settings are used, as shown
here. To change any of these settings, see “Using Properties on the SPI Object” on
page 10-17 for more information and a list of the properties.

10 Controlling Instruments Using SPI

10-10

5 Connect to the chip.

connect(S);
6 Read and write to the chip.

% Create a variable containing the data to write
dataToWrite = [3 0 0 0];

% Write the binary data to the chip
write(S, dataToWrite);

% Create a variable that contains the number of values to read
numData = 5;

% Read the binary data from the chip
data = read(S, numData);

7 Disconnect the SPI device and clean up by clearing the object.

disconnect(S);
clear('S');

Transmit Data Over SPI Using NI-845x

This example shows how to communicate with an EEPROM chip on a circuit board, with
a board index of 0 and using port 0.

1 Ensure that the NI-845x adaptor is installed so that you can use the spi interface.

2 Look at the NI-845x adaptor properties.

 Transmitting Data Over the SPI Interface

10-11

Make sure that you have the NI-845x software driver installed. For details, see “SPI
Interface Usage Requirements and Guidelines” on page 10-21.

3 Create the SPI object called s2, using these properties:

% Vendor = ni845x
% BoardIndex = 0
% Port = 0

s2 = spi('ni845x', 0, 0);

You must provide these three parameters to create the object.
4 Look at the object properties.

10 Controlling Instruments Using SPI

10-12

When you create the spi object, default communication settings are used, as shown
here. To change any of these settings, see “Using Properties on the SPI Object” on
page 10-17 for more information and a list of the properties.

5 Connect to the chip.
connect(s2);

6 Read and write to the chip.
% Create a variable containing the data to write
dataToWrite = [3 0 0 0];

% Write the binary data to the chip
write(s2, dataToWrite);

% Create a variable that contains the number of values to read
numData = 5;

 Transmitting Data Over the SPI Interface

10-13

% Read the binary data from the chip
data = read(s2, numData);

ans =

 0 0 0 0 0
7 Disconnect the SPI device and clean up by clearing the object.

disconnect(s2);
clear('s2');

SPI Functions

You can use these functions with the spi object.

Note SPI is a full duplex communication protocol, and data must be written in order to
read data. You can use the read function to write dummy data to the device. The write
function flushes the data returned by the device. The writeAndRead function does the
read and write together.

Function Purpose
instrhwinfo Check that the Aardvark and/or NI-845x adaptor is installed.

instrhwinfo('spi')

Look at the adaptor properties.

instrhwinfo('spi', 'Aardvark')

instrhwinfo('spi', 'ni845x')
spiinfo Returns information about devices and displays the information on a

per vendor basis.

info = spiinfo()

10 Controlling Instruments Using SPI

10-14

Function Purpose
connect Connect the SPI object to the device. Use this syntax:

connect(spiObject);
read Synchronously read binary data from the device. To read data, first

create a variable, such as numData, to specify the size of the data to
read. In this case, create the variable to read 5 bytes. Then use the
read function as shown here, where spiObject is the name of your
object. This process is also shown in step 6 of the previous example.
The precision of the data is UINT8.

numData = 5;

read(spiObject, numData);

Or you can use this syntax:

A = read(spiObject, size)
write Synchronously write binary data to the device. To write data, first

create a variable, such as dataToWrite. In this case, create the data
[3 0 0 0]. Then use the write function as shown here, where
spiObject is the name of your object. This process is also shown in
step 6 of the previous example. The precision of the data written is
UINT8.

dataToWrite = [3 0 0 0];

write(spiObject, dataToWrite);

 Transmitting Data Over the SPI Interface

10-15

Function Purpose
writeAndRead Synchronously do a simultaneous read and write of binary data with

the device. In this case, the function synchronously writes the data
specified by the variable dataToWrite to the device in binary
format, then synchronously reads from the device and returns the
data to the variable data, as shown here, where spiObject is the
name of your object. The precision of the data written and read is
UINT8.

dataToWrite = [3 0 0 0];

data = writeAndRead(spiObject, dataToWrite)
disconnect Disconnect SPI object from the device. Use this syntax:

disconnect(spiObject);

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

10 Controlling Instruments Using SPI

10-16

Using Properties on the SPI Object
Use the properties function on the spi object to see the available properties. In the
preceding example, the syntax would be:

properties(S)

The following shows the output of the properties from the preceding example,
“Transmitting Data Over the SPI Interface” on page 10-9.

>> properties(S)

Properties for class instrument.interface.spi.aardvark.Spi:

 BitRate
 ClockPhase
 ClockPolarity
 ChipSelect
 Port
 BoardIndex
 VendorName
 BoardSerial
 ConnectionStatus
 TransferStatus

You can use these interface-specific properties with the spi object.
Property Description
BitRate SPI clock speed. Must be a positive, nonzero value specified

in Hz. The default is 1000000 Hz for both the Aardvark and
NI-845x adaptors. To change from the default:

S.BitRate = 400000

 Using Properties on the SPI Object

10-17

Property Description
ClockPhase SPI clock phase. Can be specified as 'FirstEdge' or

'SecondEdge'. The default of 'FirstEdge' is used if you
do not specify a phase.

ClockPhase indicates when the data is sampled. If set to
'FirstEdge', the first edge of the clock is used to sample
the first data byte. The first edge may be the rising edge (if
ClockPolarity is set to 'IdleLow'), or the falling edge (if
ClockPolarity is set to 'IdleHigh'). If set to
'SecondEdge', the second edge of the clock is used to
sample the first data byte. The second edge may be the
falling edge (if ClockPolarity is set to 'IdleLow'), or the
rising edge (if ClockPolarity is set to 'IdleHigh').

To change from the default:

S.ClockPhase = 'SecondEdge'
ClockPolarity SPI clock polarity. Can be specified as 'IdleLow' or

'IdleHigh'. The default of 'IdleLow' is used if you do not
specify a phase.

ClockPolarity indicates the level of the clock signal when
idle. 'IdleLow' means the clock idle state is low, and
'IdleHigh' means the clock idle state is high.

To change from the default:

S.Polarity = 'IdleHigh'
ChipSelect SPI chip select line. The Aardvark adaptor uses 0 as the chip

select line since it has only one line, so that is the default and
only valid value.

10 Controlling Instruments Using SPI

10-18

Property Description
Port Use to create spi object. Port number of your hardware,

specified as the number 0. The Aardvark adaptor uses 0 as
the port number when there is one adaptor board connected.
If there are multiple boards connected, they could use ports 0
and 1. Specify port number as the third argument when you
create the spi object:

S = spi('aardvark', 0, 0);
BoardSerial Unique identifier of the SPI communication device.
VendorName Use to create spi object. Adaptor board vendor, must be set

to 'aardvark', for use with Total Phase Aardvark adaptor
or 'ni845x' for use with the NI-845x adaptor. Specify the
vendor as the first argument when you create the spi object:

S = spi('aardvark', 0, 0);
BoardIndex Use to create spi object. Specifies the board index of the

hardware. Usually set to 0. Specify board index as the second
argument when you create the spi object:

S = spi('aardvark', 0, 0);
ConnectionStatus Returns the connection status of the SPI object. Possible

values are Disconnected (default) and Connected.
TransferStatus Returns the read/write operation status of the SPI object.

Possible values:

Idle (default) – The device is not transferring any data.

Read – The device is reading data.

Write – The device is writing data.

ReadWrite – The device is reading and writing data.

 Using Properties on the SPI Object

10-19

The properties all have defaults, as indicated in the table. You do not need to set a
property unless you want to change it to a different value from the default. Aside from
the three properties required to construct the object – VendorName, BoardIndex, and
Port – any other property is set using the .dot notation syntax:

<object_name>.<property_name> = <value>

Here are a few examples of using this syntax.

Change the BitRate from the default of 1000000 to 500000 kHz

S.BitRate = 500000

Change the ClockPhase from the default of 'FirstEdge' to 'SecondEdge'

S.ClockPhase = 'SecondEdge'

where S is the name of the object used in the examples.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

10 Controlling Instruments Using SPI

10-20

SPI Interface Usage Requirements and Guidelines
You need to have either a Total Phase Aardvark host adaptor or an NI-845x adaptor
board installed to use the spi interface. The following sections describe requirements for
each option.

Aardvark-specific Requirements

To use the SPI interface with the Aardvark adaptor, you must download the Hardware
Support Package to obtain the necessary files. You must also download the USB device
driver from the vendor.

If you do not have the Aardvark driver installed, see “Install the Total Phase Aardvark
I2C/SPI Interface Support Package” on page 15-14.

Install the Aardvark Software API and Shared Library appropriate for your operating
system.

The aardvark.dll file that comes with the Total Phase Aardvark adaptor board must
be available in one of these locations for use on Windows platforms:

• Location where MATLAB was started from (bin folder)
• MATLAB current folder (PWD)
• Windows folder C:\winnt or C:\windows
• Folders listed in the path environment variable

For use on Linux platforms, the aardvark.so file that comes with the Total Phase
Aardvark adaptor board must be in your MATLAB path.

NI-845x-specific Requirements

To use the SPI interface with the NI-845x adaptor, you must download the hardware
support package to obtain the latest driver, if you do not already have the driver
installed. If you already have the latest driver installed, you do not need to download this
support package.

If you do not have the NI-845x driver installed, see “Install the NI-845x I2C/SPI
Interface Support Package” on page 15-12 to install it.

 SPI Interface Usage Requirements and Guidelines

10-21

Controlling Devices Using MODBUS

• “MODBUS Interface Supported Features” on page 11-2
• “Create a MODBUS Connection” on page 11-4
• “Configure Properties for MODBUS Communication” on page 11-7
• “Read Data from a MODBUS Server” on page 11-11
• “Read Temperature from a Remote Temperature Sensor” on page 11-16
• “Write Data to a MODBUS Server” on page 11-18
• “Write and Read Multiple Holding Registers” on page 11-21
• “Modify the Contents of a Holding Register Using a Mask Write” on page 11-24

11

MODBUS Interface Supported Features

In this section...
“MODBUS Capabilities” on page 11-2
“Supported Platforms for MODBUS” on page 11-2

MODBUS Capabilities

Instrument Control Toolbox supports the MODBUS interface over TCP/IP or Serial RTU.
You can use it to communicate with MODBUS servers, such as controlling a PLC
(Programmable Logic Controller), communicating with a temperature controller,
controlling a stepper motor, sending data to a DSP, reading bulk memory from a PAC
controller, or monitoring temperature and humidly on a MODBUS probe.

Using the MODBUS interface, you can do the following tasks, which correspond to the
MODBUS function codes listed in the table.
Functionality MODBUS Function Code
Read and write coils 1, 5, 15
Read discrete inputs 2
Read and write holding registers 3, 6, 16
Read input registers 4
Perform mask writes on holding registers 22
Perform write/read (in one operation) on
holding registers

23

Supported Platforms for MODBUS

Instrument Control Toolbox supports the MODBUS interface over TCP/IP or Serial RTU.
It is supported on the following platforms.

• Linux 64-bit
• macOS 64-bit
• Microsoft Windows 64-bit

11 Controlling Devices Using MODBUS

11-2

Note The Instrument Control Toolbox MODBUS support works on the MATLAB
command line only. It is not available in the Test & Measurement Tool.

 MODBUS Interface Supported Features

11-3

Create a MODBUS Connection
Instrument Control Toolbox supports the MODBUS interface over TCP/IP or Serial RTU.
You can use it to communicate with MODBUS servers, such as a PLC. The typical
workflow is:

• Create a MODBUS connection to a server or hardware.
• Configure the connection if necessary.
• Perform read and write operations, such as communicating with a temperature

controller.
• Clear and close the connection.

To communicate over the MODBUS interface, you first create a MODBUS object using
the modbus function. Creating the object also makes the connection. The syntax is:

<objname> = modbus('Transport', 'DeviceAddress')

or

<objname> = modbus('Transport', 'Port')

You must set the transport type as either 'tcpip' or 'serialrtu' to designate the
protocol you want to use. Then set the address and port, as shown in the next sections.
You can also use name-value pairs in the object creation to set properties such as
Timeout and ByteOrder.

When you create the MODBUS object, it connects to the server or hardware. If the
transport is 'tcpip', then DeviceAddress must be specified. Port is optional and
defaults to 502 (reserved port for MODBUS). If the transport is 'serialrtu', then
'Port' must be specified.

Create Object Using TCP/IP Transport

When the transport is 'tcpip', you must specify DeviceAddress. This is the IP
address or host name of the MODBUS server. Port is the remote port used by the
MODBUS server. Port is optional and defaults to 502, which is the reserved port for
MODBUS.

This example creates the MODBUS object m using the device address shown and port of
308.

11 Controlling Devices Using MODBUS

11-4

m = modbus('tcpip', '192.168.2.1', 308)

m =

 Modbus TCPIP with properties:

 DeviceAddress: '192.168.2.1'
 Port: 308
 Status: 'open'
 NumRetries: 1
 Timeout: 10 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

Create Object Using Serial RTU Transport

When the transport is 'serialrtu', you must specify 'Port'. This is the Serial port
the MODBUS server is connected to.

This example creates the MODBUS object m using the port of 'COM3'.

m = modbus('serialrtu','COM3')

m =

 Modbus Serial RTU with properties:

 Port: 'COM3'
 BaudRate: 9600
 DataBits: 8
 Parity: 'none'
 StopBits: 1
 Status: 'open'
 NumRetries: 1
 Timeout: 10 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

Create Object and Set a Property

You can create the object using a name-value pair to set the properties such as Timeout.
The Timeout property specifies the maximum time in seconds to wait for a response
from the MODBUS server, and the default is 10. You can change the value either during
object creation or after you create the object.

 Create a MODBUS Connection

11-5

For the list and description of properties you can set for both transport types, see
“Configure Properties for MODBUS Communication” on page 11-7.

This example creates a MODBUS object using Serial RTU, but increases the Timeout to
20 seconds.

m = modbus('serialrtu','COM3','Timeout',20)

m =

 Modbus Serial RTU with properties:

 Port: 'COM3'
 BaudRate: 9600
 DataBits: 8
 Parity: 'none'
 StopBits: 1
 Status: 'open'
 NumRetries: 1
 Timeout: 20 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

The output reflects the Timeout property change.

11 Controlling Devices Using MODBUS

11-6

Configure Properties for MODBUS Communication
The modbus object has the following properties.
Property Transport Type Description
'DeviceAddress' TCP/IP only IP address or host name of MODBUS server, for

example, '192.168.2.1'. Required during object
creation if transport is TCP/IP.

m = modbus('tcpip', '192.168.2.1')
Port TCP/IP only Remote port used by MODBUS server. The default

is 502. Optional during object creation if transport
is TCP/IP.

m = modbus('tcpip', '192.168.2.1', 308)
'Port' Serial RTU

only
Serial port MODBUS server is connected to, for
example, 'COM1'. Required during object creation
if transport is Serial RTU.

m = modbus('serialrtu','COM3')
Timeout Both TCP/IP

and Serial
RTU

Maximum time in seconds to wait for a response
from the MODBUS server, specified as a positive
value of type double. The default is 10. You can
change the value either during object creation, or
after you create the object.

m.Timeout = 30;
NumRetries Both TCP/IP

and Serial
RTU

Number of retries to perform if there is no reply
from the server after a timeout. If using the Serial
RTU transport, the message is resent. If using the
TCP/IP transport, the connection is closed and
reopened.

m.NumRetries = 5;

 Configure Properties for MODBUS Communication

11-7

Property Transport Type Description
'ByteOrder' Both TCP/IP

and Serial
RTU

Byte order of values written to or read from 16-bit
registers. Valid choices are 'big-endian' and
'little-endian'. The default is 'big-endian',
as specified by the MODBUS standard.

m.ByteOrder = 'little-endian';
'WordOrder' Both TCP/IP

and Serial
RTU

Word order for register reads and writes that span
multiple 16-bit registers. Valid choices are 'big-
endian' and 'little-endian'. The default is
'big-endian', and it is device-dependent.

m.WordOrder = 'little-endian';
BaudRate Serial RTU

only
Bit transmission rate for serial port
communication. Default is 9600 bits per seconds,
but the actual required value is device-dependent.

m.Baudrate = 28800;
DataBits Serial RTU

only
Number of data bits to transmit. Default is 8,
which is the MODBUS standard for Serial RTU.
Other valid values are 5, 6, and 7.

m.DataBits = 6;
Parity Serial RTU

only
Type of parity checking. Valid choices are 'none'
(default), 'even', 'odd', 'mark', and 'space'.
The actual required value is device-dependent. If
set to the default of none, parity checking is not
performed, and the parity bit is not transmitted.

m.Parity = 'odd';

11 Controlling Devices Using MODBUS

11-8

Property Transport Type Description
StopBits Serial RTU

only
Number of bits used to indicate the end of data
transmission. Valid choices are 1 (default) and 2.
Actual required value is device-dependent, though
1 is typical for even/odd parity and 2 for no parity.

m.StopBits = 2;

Set a Property During Object Creation

You can change property values either during object creation or after you create the
object.

You can create the modbus object using a name-value pair to set a value during object
creation.

This example creates the MODBUS object and increases the Timeout to 20 seconds.

m = modbus('serialrtu','COM3','Timeout',20)

m =

 Modbus Serial RTU with properties:

 Port: 'COM3'
 BaudRate: 9600
 DataBits: 8
 Parity: 'none'
 StopBits: 1
 Status: 'open'
 NumRetries: 1
 Timeout: 20 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

The output reflects the Timeout property change from the default of 10 seconds to 20
seconds.

Set a Property After Object Creation

 Configure Properties for MODBUS Communication

11-9

You can change a property anytime by setting the property value using this syntax after
you have created a MODBUS object.

<object_name>.<property_name> = <property_value>

This example using the same object named m increases the Timeout to 30 seconds.

m = modbus('serialrtu','COM3');
m.Timeout = 30

This example changes the Parity from the default of none to even.

m = modbus('serialrtu','COM3');
m.Parity = 'even';

11 Controlling Devices Using MODBUS

11-10

Read Data from a MODBUS Server
In this section...
“Types of Data You Can Read Over MODBUS” on page 11-11
“Reading Coils Over MODBUS” on page 11-11
“Reading Inputs Over MODBUS” on page 11-12
“Reading Input Registers Over MODBUS” on page 11-13
“Reading Holding Registers Over MODBUS” on page 11-14
“Specifying Server ID and Precision” on page 11-14

Types of Data You Can Read Over MODBUS

The read function performs read operations from four types of target-addressable areas:

• Coils
• Inputs
• Input registers
• Holding registers

When you perform the read, you must specify the target type (target), the starting
address (address), and the number of values to read (count). You can also optionally
specify the address of the server (serverId) for any target type, and the data format
(precision) for registers.

For an example showing the entire workflow of reading a holding register on a PLC, see
“Read Temperature from a Remote Temperature Sensor” on page 11-16.

Reading Coils Over MODBUS

If the read target is coils, the function reads the values from 1–2000 contiguous coils in
the remote server, starting at the specified address. A coil is a single output bit. A value
of 1 indicates the coil is on and a value of 0 means it is off.

The syntax to read coils is:

read(obj,'coils',address,count)

 Read Data from a MODBUS Server

11-11

The obj parameter is the name of the MODBUS object. The examples assume you have
created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address parameter is the starting address of the coils to read, and it is a double.
The count parameter is the number of coils to read, and it is a double. If the read is
successful, it returns a vector of doubles, each with the value 1 or 0, where the first value
in the vector corresponds to the coil value at the starting address.

This example reads 8 coils, starting at address 1.

read(m,'coils',1,8)

ans =

 1 1 0 1 1 0 1 0

You can also create a variable to be read later.

data = read(m,'coils',1,8)

data =

 1 1 0 1 1 0 1 0

Reading Inputs Over MODBUS

If the read target is inputs, the function reads the values from 1–2000 contiguous
discrete inputs in the remote server, starting at the specified address. A discrete input is
a single input bit. A value of 1 indicates the input is on, and a value of 0 means it is off.

The syntax to read inputs is:

read(obj,'inputs',address,count)

The obj parameter is the name of the MODBUS object. The examples assume you have
created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address parameter is the starting address of the inputs to read, and it is a double.
The count parameter is the number of inputs to read, and it is a double. If the read

11 Controlling Devices Using MODBUS

11-12

operation is successful, it returns a vector of doubles, each with the 1 or 0, where the first
value in the vector corresponds to the input value at the starting address.

This example reads 10 discrete inputs, starting at address 2.

read(m,'inputs',2,10)

ans =

 1 1 0 1 1 0 1 0 0 1

Reading Input Registers Over MODBUS

If the read target is input registers, the function reads the values from 1–125 contiguous
input registers in the remote server, starting at the specified address. An input register
is a 16-bit read-only register.

The syntax to read input registers is:

read(obj,'inputregs',address,count)

The obj parameter is the name of the MODBUS object. The examples assume you have
created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address parameter is the starting address of the input registers to read, and it is a
double. The count parameter is the number of input registers to read, and it is a double.
If the read operation is successful, it returns a vector of doubles. Each double represents
a 16-bit register value, where the first value in the vector corresponds to the input
register value at the starting address.

This example reads 4 input registers, starting at address 20.

read(m,'inputregs',20,4)

ans =

 27640 60013 51918 62881

 Read Data from a MODBUS Server

11-13

Reading Holding Registers Over MODBUS

If the read target is holding registers, the function reads the values from 1–125
contiguous holding registers in the remote server, starting at the specified address. A
holding register is a 16-bit read/write register.

The syntax to read inputs is:

read(obj,'holdingregs',address,count)

The obj parameter is the name of the MODBUS object. The examples assume you have
created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address parameter is the starting address of the holding registers to read, and it is
a double. The count parameter is the number of holding registers to read, and it is a
double. If the read operation is successful, it returns a vector of doubles. Each double
represents a 16-bit register value, where the first value in the vector corresponds to the
holding register value at the starting address.

This example reads 4 holding registers, starting at address 20.

read(m,'holdingregs',20,4)

ans =

 27640 60013 51918 62881

For an example showing the entire workflow of reading a holding register on a PLC, see
“Read Temperature from a Remote Temperature Sensor” on page 11-16.

Specifying Server ID and Precision

You can read any of the four types of targets and also specify the optional parameters for
server ID, and can specify precision for registers.

Server ID Option

The serverId argument specifies the address of the server to send the read command
to. Valid values are 0–247, with 0 being the broadcast address. This argument is
optional, and the default is 1.

11 Controlling Devices Using MODBUS

11-14

The syntax to specify server ID is:

read(obj,target,address,count,serverId)

This example reads 8 coils starting at address 1 from server ID 3.

read(m,'coils',1,8,3);

Precision Option

The 'precision' argument specifies the data format of the register being read from on
the MODBUS server. Valid values are 'uint16', 'int16', 'uint32', 'int32',
'uint64', 'int64', 'single', and 'double'. This argument is optional, and the
default is 'uint16'.

Note that 'precision' does not refer to the return type, which is always 'double'. It
only specifies how to interpret the register data.

The syntax to specify precision is:

read(obj,target,address,count,precision)

This example reads 8 holding registers starting at address 1 using a precision of
'uint32'.

read(m,'holdingregs',1,8,'uint32');

Both Options

You can set both the serverId option and the 'precision' option together when the
target is a register. When you use both options, the serverId should be listed first after
the required arguments.

The syntax to specify both Server ID and precision is:

read(obj,target,address,count,serverId,precision)

This example reads 8 holding registers starting at address 1 using a precision of
'uint32' from Server ID 3.

read(m,'holdingregs',1,8,3,'uint32');

 Read Data from a MODBUS Server

11-15

Read Temperature from a Remote Temperature Sensor
This example shows how to read temperature and humidity measurements from a
remote sensor on a PLC connected via TCP/IP. The temperature sensor is connected to a
holding register at address 1 on the board, and the humidity sensor is at address 5.

1 Create the MODBUS object, using TCP/IP.

m = modbus('tcpip', '192.168.2.1', 502)

m =

 Modbus TCPIP with properties:

 DeviceAddress: '192.168.2.1'
 Port: 502
 Status: 'open'
 NumRetries: 1
 Timeout: 10 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

2 The humidity sensor does not always respond instantly, so increase the timeout
value to 20 seconds.

m.Timeout = 20
3 The temperature sensor is connected to a holding register at address 1 on the board.

Read 1 value to get the current temperature reading. Since temperature value is a
double, set the precision to a double.

read(m,'holdingregs',1,1,'double')

ans =

 46.7
4 The humidity sensor is connected to the holding register at address 5 on the board.

Read 1 value to get the current humidity reading.

read(m,'holdingregs',5,1,'double')

ans =

 35.8

11 Controlling Devices Using MODBUS

11-16

5 Disconnect from the server and clear the object.

clear m

 Read Temperature from a Remote Temperature Sensor

11-17

Write Data to a MODBUS Server

In this section...
“Types of Data You Can Write to Over MODBUS” on page 11-18
“Writing Coils Over MODBUS” on page 11-18
“Writing Holding Registers Over MODBUS” on page 11-19

Types of Data You Can Write to Over MODBUS

The write function performs write operations to two types of target addressable areas:

• Coils
• Holding registers

Each of the two areas can accept a write request to a single address or a contiguous
address range. When you perform the write operation, you must specify the target type
(target), the starting address (address), and the values to write (values). You can
also optionally specify the address of the server (serverId) and the data format
(precision).

Writing Coils Over MODBUS

If the write target is coils, the function writes a contiguous sequence of 1–1968 coils to
either on or off (1 or 0) in a remote device. A coil is a single output bit. A value of 1
indicates the coil is on, and a value of 0 means it is off.

The syntax to write to coils is:

write(obj,'coils',address,values)

The obj parameter is the name of the MODBUS object. The examples assume you have
created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address parameter is the starting address of the coils to write to, and it is a double.
The values parameter is an array of values to write. For a target of coils, valid values
are 0 and 1.

11 Controlling Devices Using MODBUS

11-18

This example writes to 4 coils, starting at address 8289.

write(m,'coils',8289,[1 1 0 1])

You can also create a variable for the values to write.

values = [1 1 0 1];
write(m,'coils',8289,values)

Writing Holding Registers Over MODBUS

If the write target is holding registers, the function writes a block of 1–123 contiguous
registers in a remote device. Values whose representation is greater than 16 bits are
stored in consecutive register addresses.

The syntax to write to holding registers is:

write(obj,'holdingregs',address,values)

The obj parameter is the name of the MODBUS object. The examples assume you have
created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address parameter is the starting address of the holding registers to write to, and it
is a double. The values parameter is an array of values to write. For a target of holding
registers, valid values must be in the range of the specified precision.

This example sets the register at address 49153 to 2000.

write(m,'holdingregs',49153,2000)

Precision Option

The 'precision' argument specifies the data format of the register being written to on
the MODBUS server. Valid values are 'uint16', 'int16', 'uint32', 'int32',
'uint64', 'int64', 'single', and 'double'. This argument is optional, and the
default is 'uint16'.

The values passed in to be written are converted to register values based on the specified
precision. For precision values 'int32', 'uint32', and 'single', each value
corresponds to 2 registers, and for 'uint64', 'int64' and 'double', each value

 Write Data to a MODBUS Server

11-19

corresponds to 4 registers. For 'int16' and 'uint16', each value is from a single 16-bit
register.

This example writes 3 values, starting at address 29473 and converting to single
precision.

write(m,'holdingregs',29473,[928.1 50.3 24.4],'single')

11 Controlling Devices Using MODBUS

11-20

Write and Read Multiple Holding Registers
The writeRead function is used to perform a combination of one write operation and one
read operation on groups of holding registers in a single MODBUS transaction. The write
operation is always performed before the read. The range of addresses to read and the
range of addresses to write must be contiguous, but each is specified independently and
may or may not overlap.

The syntax for the write-read operation to holding registers is:

writeRead(obj,writeAddress,values,readAddress,readCount)

The obj parameter is the name of the MODBUS object. The examples assume you have
created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The writeAddress is the starting address of the holding registers to write to, and it is a
double. The values parameter is an array of values to write. The first value in the vector
is written to the writeAddress. Each value must be in the range 0–65535.

The readAddress is the starting address of the holding registers to read, and
readCount is the number of registers to read.

If the operation is successful, it returns an array of doubles, each representing a 16-bit
register value, where the first value in the vector corresponds to the register value at
address specified in readAddress.

This example writes 2 holding registers starting at address 601, and reads 4 holding
registers starting at address 19250.

writeRead(m,601,[1024 512],19250,4)

ans =

 27640 60013 51918 62881

You can optionally create variables for the values to be written, instead of including the
array of values in the function syntax, as shown above. The same example could be
written this way, using a variable for the values:

values = [1024 512];
writeRead(m,601,values,19250,4)

 Write and Read Multiple Holding Registers

11-21

ans =

 27640 60013 51918 62881

Server ID Option

The serverId argument specifies the address of the server to send the read command
to. Valid values are 0–247, with 0 being the broadcast address. This argument is
optional, and the default is 1.

The syntax to specify server ID is:

writeRead(obj,writeAddress,values,readAddress,readCount,serverId)

This example writes 3 holding registers starting at address 400, and reads 4 holding
registers starting at address 52008, from server ID 6.

writeRead(m,400,[1024 512 680],52008,4,6)

ans =

 38629 84735 29456 39470

Precision Option

The 'writePrecision' and 'readPrecision' arguments specify the data format of
the register being read from or written to on the MODBUS server. Valid values are
'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64', 'single', and
'double'. This argument is optional, and the default is 'uint16'.

The values passed in to be written are converted to register values based on the specified
precision. For precision values 'int32', 'uint32', and 'single', each value
corresponds to 2 registers, and for 'uint64', 'int64' and 'double', each value
corresponds to 4 registers. For 'int16' and 'uint16', each value is from a single 16-bit
register.

Note that precision specifies how to interpret or convert the register data, not the return
type of the read operation. The data returned is always of type double.

The syntax for designating the write or read precision is:

writeRead(obj,writeAddress,values,writePrecision,readAddress,readCount,readPrecision)

11 Controlling Devices Using MODBUS

11-22

If you want to use the serverId argument as well, it goes after the readPrecision.

This example writes 3 holding registers starting at address 400 and reads 4 holding
registers starting at address 52008, from server ID 6. It also specifies a
writePrecision of 'uint64' and a readPrecision of 'uint32'.

writeRead(m,400,[1024 512 680],'uint64',52008,4,'uint32',6)

ans =

 38629 84735 29456 39470

This example reads 2 holding registers starting at address 919, and writes 3 holding
registers starting at address 719, formatting read and write for single precision data
registers.

 values = [1.14 5.9 11.27];
 writeRead(m,719,values,'single',919,2,'single')

 Write and Read Multiple Holding Registers

11-23

Modify the Contents of a Holding Register Using a Mask Write
You can modify the contents of a holding register using the maskWrite function. The
function can set or clear individual bits in a specific holding register. It is a read/modify/
write operation, and uses a combination of an AND mask, an OR mask, and the current
contents of the register.

The function algorithm works as follows:

 Result = (register value AND andMask) OR (orMask AND (NOT andMask))

For example:

 Hex Binary
Current contents 12 0001 0010
And_Mask F2 1111 0010
Or_Mask 25 0010 0101
(NOT And_Mask) 0D 0000 1101

Result 17 0001 0111

If the orMask value is 0, the result is simply the logical ANDing of the current contents
and the andMask. If the andMask value is 0, the result is equal to the orMask value.

The contents of the register can be read by using the read function with the target set to
'holdingregs'. They could, however, be changed subsequently as the controller scans
its user logic program.

The syntax for the mask write operation for holding registers is:

maskWrite(obj, address, andMask, orMask)

If you want to designate a server ID, use:

maskWrite(obj, address, andMask, orMask, serverId)

The obj parameter is the name of the MODBUS object. The examples assume you have
created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address is the register address to perform mask write on. The andMask parameter
is the AND value to use in the mask write operation. The valid range is 0–65535. The

11 Controlling Devices Using MODBUS

11-24

orMask parameter is the OR value to use in the mask write operation. The valid range is
0–65535.

This example sets bit 0 at address 20 and performs a mask write operation. Since the
andMask is a 6, that clears all bits except for bits 1 and 2. Bits 1 and 2 are preserved.

andMask = 6
orMask = 0

maskWrite(m,20,andMask,orMask)

 Modify the Contents of a Holding Register Using a Mask Write

11-25

Using Device Objects

This chapter describes specific features and actions related to using device objects.

• “Device Objects” on page 12-2
• “Creating and Connecting Device Objects” on page 12-5
• “Communicating with Instruments” on page 12-8
• “Device Groups” on page 12-13

12

Device Objects

In this section...
“Overview” on page 12-2
“What Are Device Objects?” on page 12-2
“Device Objects for MATLAB Instrument Drivers” on page 12-3

Overview

All instruments attached to your computer must communicate through an interface.
Popular interface protocols include GPIB, VISA, RS-232 (serial), and RS-485 (serial).
While Instrument Control Toolbox interface objects allow you to communicate with your
equipment at a low (instrument command) level, Instrument Control Toolbox also allows
you to communicate with your equipment without detailed knowledge of how the
hardware interface operates.

Programmable devices understand a specific language, sometimes referred to as its
command set. One common set is called SCPI (Standard Commands for Programmable
Instruments).

Device objects allow you to configure and query an instrument without knowledge of its
command set. This section covers the basic functionality of device objects that use
MATLAB instrument drivers.

If your application is straightforward, or if you are already familiar with the topics
mentioned above, you might want to begin with “Creating and Connecting Device
Objects” on page 12-5. If you want a high-level description of all the steps you are
likely to take when communicating with your instrument, refer to the Getting Started
documentation that is linked to from the top of the main Instrument Control Toolbox Doc
Center page.

What Are Device Objects?

Device objects are used to represent instruments in MATLAB workspace. Properties and
methods specific to an instrument are encapsulated within device objects. Device objects
also free you from the specific underlying commands required to communicate with your
hardware.

12 Using Device Objects

12-2

You can use device objects at the MATLAB Command Window, inside functions, scripts,
and graphical user interface callbacks. The low-level communication is performed
through a MATLAB instrument driver.

User

MATLAB
GUI
or

Command
Line

Device
Object

MATLAB
Instrument

Driver

IVI
Driver

VXIplug&play
Driver

Interface
Object

I/
O

 H
a

rd
w

a
re

Serial

GPIB

TCP/IP

UDP

Hardware
Instrument

MATLAB

Device Objects for MATLAB Instrument Drivers

There are three types of MATLAB instrument drivers:

• MATLAB interface instrument driver
• MATLAB IVI instrument driver
• MATLAB VXIplug&play instrument driver
• Generic instrument driver

Instrument Control Toolbox device objects support all these types of MATLAB drivers, so
that by using a device object, you can interface with any of these drivers in the same way.
However, each of these drivers interfaces differently with the hardware. While MATLAB
IVI and MATLAB VXIplug&play drivers interface directly through standard drivers and
the hardware port to the instrument, the MATLAB interface driver requires an interface
object to communicate with the instrument. You can use generic drivers to communicate
with devices or software. For more information on generic drivers, see “Generic Drivers:
Overview” on page 16-2.

The Instrument Control Toolbox software supports the following interface objects:

• gpib
• serial

 Device Objects

12-3

• tcpip
• udp
• visa

To learn how to create and use interface objects, see “Creating an Interface Object” on
page 3-2.

Note If you are using an interface object with a device object and a MATLAB interface
driver, you do not need to connect the interface object to the interface using the fopen
command. You need to connect the device object only.

Available MATLAB Instrument Drivers

Several drivers ship with the Instrument Control Toolbox software. You can find these
drivers by looking in the directory

matlabroot\toolbox\instrument\instrument\drivers

where matlabroot is the MATLAB installation directory, as seen when you type

matlabroot

at the MATLAB Command Window.

Many other drivers are available on the MathWorks Web site at

http://www.mathworks.com/matlabcentral/fileexchange

including drivers specifically for the Instrument Control Toolbox software.

12 Using Device Objects

12-4

http://www.mathworks.com/matlabcentral/fileexchange

Creating and Connecting Device Objects

In this section...
“Device Objects for MATLAB Interface Drivers” on page 12-5
“Device Objects for VXIplug&play and IVI Drivers” on page 12-6
“Connecting the Device Object” on page 12-7

Device Objects for MATLAB Interface Drivers

Create a MATLAB device object to communicate with a Tektronix TDS 210 Oscilloscope.
To communicate with the scope you will use a National Instruments GPIB controller.

1 First create an interface object for the GPIB hardware. The following command
creates a GPIB object for a National Instruments GPIB board at index 0 with an
instrument at primary address 1.

g = gpib('ni',0,1);
2 Now that you have created the interface object, you can construct a device object that

uses it. The command to use is icdevice. You need to supply the name of the
instrument driver, tektronix_tds210, and the interface object created for the
GPIB controller, g.

d = icdevice('tektronix_tds210', g);

You can use the whos command to display the size and class of d.

whos d
 Name Size Bytes Class

 d 1x1 652 icdevice object

Grand total is 22 elements using 652 bytes

Device Object Properties

A device object has a set of base properties and a set of properties defined by the driver.
All device objects have the same base properties, regardless of the driver being used. The
driver properties are defined by the driver specified in the icdevice constructor.

 Creating and Connecting Device Objects

12-5

Device Object Display

Device objects provide you with a convenient display that summarizes important object
information. You can invoke the display in these ways:

• Type the name of the device object at the command line.
• Exclude the semicolon when creating the device object.
• Exclude the semicolon when configuring properties using dot notation.
• Pass the object to the disp or display function.

The display summary for device object d is given below.

Instrument Device Object Using Driver : tektronix_tds210.mdd

 Instrument Information
 Type: Oscilloscope
 Manufacturer: Tektronix
 Model: TDS210

 Driver Information
 DriverType: MATLAB interface object
 DriverName: tektronix_tds210.mdd
 DriverVersion: 1.0

 Communication State
 Status: open

You can also display summary information via the Workspace browser by right-clicking a
device object and selecting Display Summary from the context menu.

Device Objects for VXIplug&play and IVI Drivers

Creating the MATLAB Instrument Driver

The command-line function makemid creates a MATLAB instrument driver from a
VXIplug&play or IVI-C driver, saving the new driver in a file on disk. The syntax is

makemid('driver','filename')

where driver is the original VXIplug&play or IVI-C driver name (identified by
instrhwinfo or the Test & Measurement Tool), and filename is the file containing the

12 Using Device Objects

12-6

newly created MATLAB instrument driver. See the makemid reference page for a full
description of the function and all its options.

You can open the new driver in the MATLAB Instrument Driver Editor, and then modify
and save it as required.

Creating the Device Object

After you create the MATLAB instrument driver by conversion, you create the device
object with the filename of the new driver as an argument for icdevice.

For example, if the driver is created from a VXIplug&play or IVI-C driver,

obj = icdevice('ConvertedDriver.mdd','GPIB0::2::INSTR')

Connecting the Device Object

Now that you have created the device object, you can connect it to the instrument with
the connect function. To connect the device object, d, created in the last example, use
the following command:

connect(d);

By default, the property settings are updated to reflect the current state of the
instrument. You can modify the instrument settings to reflect the device object's property
values by passing an optional update parameter to connect. The update parameter can
be either object or instrument. To have the instrument updated to the object's
property values, the connect function from the previous example would be

connect(d, 'instrument');

If connect is successful, the device object's status property is set to open; otherwise it
remains as closed. You can check the status of this property with the get function or by
looking at the object display.

d.status

ans =

 open

 Creating and Connecting Device Objects

12-7

Communicating with Instruments
In this section...
“Configuring Instrument Settings” on page 12-8
“Calling Device Object Methods” on page 12-9
“Control Commands” on page 12-11

Configuring Instrument Settings
Once a device object has been created and connected, it can be used as the interface to an
instrument. This chapter shows you how to access and configure your instrument's
settings, as well as how to read and write data to the instrument.

Every device object contains properties specific to the instrument it represents. These
properties are defined by the instrument driver used during device object creation. For
example, there may be properties for an oscilloscope that allow you to adjust trigger
parameters, or the contrast of the screen display.

Properties are assigned default values at device object creation. On execution of connect
the object is updated to reflect the state of the instrument or vice versa, depending on the
second argument given to connect.

You can obtain a full listing of configurable properties by calling the set command and
passing the device object.

Configuring Settings on an Oscilloscope

This example illustrates how to configure an instrument using a device object.

The instrument used is a Tektronix TDS 210 two-channel oscilloscope. A square wave is
input into channel 1 of the oscilloscope. The task is to adjust the scope's settings so that
triggering occurs on the falling edge of the signal:

1 Create the device object — Create a GPIB interface object, and then a device
object for a TDS 210 oscilloscope.

g = gpib('ni',0,1);
d = icdevice('tektronix_tds210', g);

2 Connect the device object — Use the connect function to connect the device
object to the instrument.

12 Using Device Objects

12-8

connect(d);
3 Check the current Slope settings for the Trigger property— Create a

variable to represent the Trigger property and then use the get function to obtain
the current value for the oscilloscope Slope setting.

dtrigger = get(d, 'Trigger');
dtrigger.Slope
ans =

 rising

The Slope is currently set to rising.
4 Change the Slope setting — If you want triggering to occur on the falling edge,

you need to modify that setting in the device object. This can be accomplished with
the set command.

dtrigger.Slope = 'falling');

This changes Slope to falling.
5 Disconnect and clean up — When you no longer need the device object, disconnect

it from the instrument and remove it from memory. Remove the device object and
interface object from the MATLAB workspace.

disconnect(d);
delete(d);
clear d g dtrigger;

Calling Device Object Methods

Device objects contain methods specific to the instruments they represent.
Implementation details are hidden behind a single function. Instrument-specific
functions are defined in the MATLAB instrument driver.

The methods function displays all available driver-defined functions for the device
object. The display is divided into two sections:

• Generic object functions
• Driver-specific object functions

To view the available methods, type

 Communicating with Instruments

12-9

methods(obj)

Use the instrhelp function to get help on the device object functions.

instrhelp(obj, methodname);

To call instrument-specific methods you use the invoke function. invoke requires the
device object and the name of the function. You must also provide input arguments, when
appropriate. The following example demonstrates how to use invoke to obtain
measurement data from an oscilloscope.

Using Device Object Functions

This example illustrates how to call an instrument-specific device object function. Your
task is to obtain the frequency measurement of a waveform. The instrument is a
Tektronix TDS 210 two-channel oscilloscope.

The scope has been preconfigured with a square wave input into channel 1 of the
oscilloscope. The hardware supports four different measurements: frequency, mean,
period, and peak-to-peak. The requested measurement is signified with the use of an
index variable from 1 to 4.

For demonstration purposes, the oscilloscope in this example has been preconfigured
with the correct measurement settings:

1 Create the device object — Create a GPIB interface object and a device object for
the oscilloscope.

g = gpib('ni',0,1);
d = icdevice('tektronix_tds210', g);

2 Connect the device object — Use the connect command to open the GPIB object
and update the settings in the device object.

connect(d);
3 Obtain the frequency measurement — Use the invoke command and call

measure. The measure function requires that an index parameter be specified. The
value of the index specifies which measurement the oscilloscope should return. For
the current setup of the Tektronix TDS 210 oscilloscope, an index of 1 indicates that
frequency is to be measured.

invoke(d, 'measure', 1)

ans =

12 Using Device Objects

12-10

 999.9609

The frequency returned is 999.96 Hz, or nearly 1 kHz.
4 Disconnect and clean up — You no longer need the device object so you can

disconnect it from the instrument. You should also delete it from memory and
remove it from the MATLAB workspace.

disconnect(d);
delete(d);
clear d g;

Control Commands

Control commands are special functions and properties that exist for all device objects.
You use control commands to identify an instrument, reset hardware settings, perform
diagnostic routines, and retrieve instrument errors. The set of control commands consists
of

• “InstrumentModel” on page 12-11
• “devicereset” on page 12-12
• “selftest” on page 12-12
• “geterror” on page 12-12

All control commands are defined within the MATLAB instrument driver for your device.

InstrumentModel

InstrumentModel is a device object property. When queried, the instrument
identification command is sent to the instrument.

For example, for a Tektronix TDS 210 oscilloscope,

d.InstrumentModel

ans =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v2.03 TDS2MM:MMV:v1.04

 Communicating with Instruments

12-11

devicereset

To restore the factory settings on your instrument, use the devicereset function. When
devicereset is called, the appropriate reset instruction is sent to your instrument.

The command accepts a connected device object and has no output arguments.

devicereset(obj);

selftest

This command requests that your instrument perform a self-diagnostic. The actual
operations performed and output arguments are specific to the instrument your device
object is connected to. selftest accepts a connected device object as an input argument.

result = selftest(obj);

geterror

You can retrieve error messages generated by your instrument with the geterror
function. The returned messages are instrument specific. geterror accepts a connected
device object as an input argument.

msg = geterror(obj);

12 Using Device Objects

12-12

Device Groups

In this section...
“Working with Group Objects” on page 12-13
“Using Device Groups to Access Instrument Data” on page 12-14

Working with Group Objects

Device groups are used to group several related properties. For example, a channel group
might contain the input channels of an oscilloscope, and the properties and methods
specific to the input channels on the instrument.

MATLAB instrument drivers specify the type and quantity of device groups for device
objects.

Group objects can be accessed via the get command. For the Tektronix TDS 210
oscilloscope, there is a channel group that contains two group objects. The device
property to access a group is always the group name.

chans = get(d, 'Channel')

 HwIndex: HwName: Type: Name:
 1 CH1 scope-channel Channel1
 2 CH2 scope-channel Channel2

To display the functions that a device group object supports, use the methods function.

methods(chans(1))

You can also display a list of the group object's properties and their current settings.

chans(2)

To get help on a driver-specific property or function, use the instrhelp function, with
the name of the function or property.

instrhelp(chans(1),'Coupling')

 Device Groups

12-13

Using Device Groups to Access Instrument Data

This example shows how to obtain waveform data from a Tektronix TDS 210 oscilloscope
with a square wave signal input on channel 1, on a Windows machine. The methods used
are specific to this instrument:

1 Create and connect — First, create the device object for the oscilloscope and then
connect to the instrument.

s = serial('com1');
d = icdevice('tektronix_tds210', s);
connect(d);

2 Get the device group — To retrieve waveform data, first gain access to the
Waveform group for the device object.

w = d.waveform;

This group is specific for the hardware you are using. The TDS 210 oscilloscope has
one Waveform; therefore the group contains one group object.

HwIndex: HwName: Type: Name:
1 Waveform1 scope-waveform Waveform1

3 Obtain the waveform — Now that you have access to the Waveform group objects,
you can call the readwaveform function to acquire the data. For this example,
channel 1 of the oscilloscope is reading the signal. To access this channel, call
readwaveform on the first channel.

wave = invoke(w, 'readwaveform', 'channel1');
4 View the data — The wave variable now contains the waveform data from the

oscilloscope. Use the plot command to view the data.

plot(wave);
5 Disconnect and clean up — Once the task is done, disconnect the hardware and

free the memory used by the objects.

disconnect(d)
delete([d s])
clear d, s, w, wave;

12 Using Device Objects

12-14

Using VXIplug&play Drivers

This chapter describes the use of VXIplug&play drivers for instrument control. The
sections are as follows.

• “VXI plug and play Setup” on page 13-2
• “VXI plug and play Drivers” on page 13-4

13

VXI plug and play Setup

In this section...
“Instrument Control Toolbox Software and VXIplug&play Drivers” on page 13-2
“VISA Setup” on page 13-2
“Other Software Requirements” on page 13-3

Instrument Control Toolbox Software and VXIplug&play Drivers

The Instrument Control Toolbox software can communicate with hardware using
VXIplug&play drivers. Most often, the instrument manufacturers supply these drivers.

For definitions and specifications of VXIplug&play drivers, see the Web site of the IVI
Foundation at http://ivifoundation.org/specifications/default.aspx.

VISA Setup

A system must have VISA installed in order for VXIplug&play drivers to work. The
driver installer software might specify certain VISA or other connectivity requirements.

To determine whether your system is properly configured with the necessary version of
VISA, at the MATLAB Command window, type:

instrhwinfo visa
ans =
 InstalledAdaptors: {'agilent'}
 JarFileVersion: 'Version 2.0 (R14)'

The cell array returned for InstalledAdaptors indicates which VISA software is
installed. A 1x0 cell array indicates that no VISA is installed. Possible
InstalledAdaptors values are agilent, tek, and ni.

If you do not have VISA installed, you need to install it. The software installation disk
provided with your instrument might include VISA along with the instrument's
VXIplug&play driver, or you might be able to download VISA from the instrument
manufacturer's Web site.

13 Using VXIplug&play Drivers

13-2

http://ivifoundation.org/specifications/default.aspx

Other Software Requirements

An instrument driver can have other software requirements in addition to or instead of
VISA. Consult the driver documentation. The installer software itself might specify these
requirements.

 VXI plug and play Setup

13-3

VXI plug and play Drivers

In this section...
“Installing VXI plug&play Drivers” on page 13-4
“Creating a MATLAB VXIplug&play Instrument Driver” on page 13-5
“Constructing Device Objects Using a MATLAB VXIplug&play Instrument Driver” on
page 13-8
“Creating Shared Libraries or Standalone Applications When Using IVI-C or VXI” on
page 13-8

Installing VXI plug&play Drivers

The VXIplug&play driver particular to a piece of equipment is usually provided by the
equipment manufacturer as either an installation disk or as a Web download. Once the
driver is installed, you can determine whether the configuration is visible to MATLAB
software by using the Test & Measurement Tool to view the current driver installations.
Open the tool by typing:

tmtool

Expand the Instrument Drivers node and click VXIplug&play Drivers. Click the
Scan button to update the display. All installed VXIplug&play drivers will be listed.

Alternatively, you can use the MATLAB function instrhwinfo to find out which drivers
are installed.

13 Using VXIplug&play Drivers

13-4

instrhwinfo ('vxipnp')
ans =
 InstalledDrivers: {'tktds5k', 'ag3325b', 'hpe363xa'}
 VXIPnPRootPath: 'C:\VXIPNP\WINNT'

The cell array returned for InstalledDrivers contains the names of all the installed
VXIplug&play drivers. The string returned for VXIPnPRootPath indicates where the
drivers are installed.

Creating a MATLAB VXIplug&play Instrument Driver

To use a VXIplug&play driver with a device object, you must have a MATLAB
VXIplug&play instrument driver based upon the information in the original
VXIplug&play driver. The MATLAB VXIplug&play instrument driver, whether modified
or not, acts as a wrapper to the VXIplug&play driver. You can download or create the
MATLAB instrument driver.

Downloading a Driver from the MathWorks Web Site

You might find an appropriate MATLAB driver wrapper for your instrument on the
MathWorks Web site, on the Supported Hardware page for the Instrument Control
Toolbox software, at

http://www.mathworks.com/products/supportedio.html?prodCode=IC

On this page, click the VXIplug&play link. You then have a choice to go to the MATLAB
Central File Exchange, where you can look for the driver you need, or you can submit
a request to MathWorks for your particular driver with the Instrument Driver
Request Form.

To use the downloaded MATLAB VXIplug&play driver, you must also have the
instrument's VXIplug&play driver installed. This driver is probably available from the
instrument manufacturer's Web site.

Creating a Driver with makemid

The command-line function makemid creates a MATLAB VXIplug&play instrument
driver from a VXIplug&play driver, saving the new driver in a file on disk. The syntax is

makemid('driver','filename')

 VXI plug and play Drivers

13-5

http://www.mathworks.com/products/supportedio.html?prodCode=IC

where driver is the original VXIplug&play instrument driver name (identified by
instrhwinfo), and filename is the file containing the resulting MATLAB instrument
driver. See the makemid reference page for details on this function.

If you need to customize the driver, open the new driver in the MATLAB Instrument
Driver Editor, modify it as required, and save it.

Note When you create a MATLAB instrument driver based on a VXIplug&play driver,
the original driver must remain installed on your system for you to use the new
MATLAB instrument driver.

Importing with the MATLAB Instrument Driver Editor (midedit)

The MATLAB Instrument Driver Editor can import a VXIplug&play driver, thereby
creating a MATLAB VXIplug&play instrument driver. You can evaluate or set the
driver's functions and properties, and you can save the modified MATLAB instrument
driver for further use:

1 Open the MATLAB Instrument Driver Editor with midedit.
2 Select File > Import.
3 In the Import Driver dialog box, select the VXIplug&play driver that you want to

import and click Import.

The MATLAB Instrument Driver Editor loads the driver and displays the
components of the driver, as shown in the following figures.

13 Using VXIplug&play Drivers

13-6

MATLAB Instrument Driver Editor Showing tktds5k MATLAB Instrument Driver Summary

tktds5k MATLAB Instrument Driver Display Group Functions

With the MATLAB Instrument Driver Editor, you can:

• Create, delete, modify, and rename properties, functions, or groups.

 VXI plug and play Drivers

13-7

• Add code around instrument commands for analysis.
• Add create, connect, and disconnect code.
• Save the driver as a MATLAB VXIplug&play instrument driver.

For more information, see “MATLAB Instrument Driver Editor Overview” on page 19-
2.

Note When you create a MATLAB instrument driver based on a VXIplug&play driver,
the original driver must remain installed on your system for you to use the new
MATLAB instrument driver.

Constructing Device Objects Using a MATLAB VXIplug&play
Instrument Driver

Once you have the MATLAB VXIplug&play instrument driver, you create the device
object with the file name of the driver and a VISA resource name as arguments for
icdevice. For example:

obj = icdevice('MATLABVXIpnpDriver.mdd','GPIB0::2::INSTR')
connect(obj)

See the icdevice reference page for full details about this function.

Creating Shared Libraries or Standalone Applications When Using IVI-
C or VXI

When using IVI-C or VXI Plug&Play drivers, executing your code will generate
additional file(s) in the folder specified by executing the following code at the MATLAB
prompt:

sprintf('%s',[tempdir 'ICTDeploymentFiles'])

On all supported platforms, a file with the name
MATLABPrototypeFor<driverName>.m is generated, where <driverName> the name
of the IVI-C or VXI Plug&Play driver. With 64-bit MATLAB on Windows, a second file by
the name <driverName>_thunk_pcwin64.dll is generated. When creating your

13 Using VXIplug&play Drivers

13-8

deployed application or shared library, manually include these generated files. For more
information on including additional files refer to the MATLAB Compiler documentation.

 VXI plug and play Drivers

13-9

Using IVI Drivers

This chapter describes the use of IVI drivers for instrument control.

• “IVI Drivers Overview” on page 14-2
• “Instrument Interchangeability” on page 14-3
• “Getting Started with IVI Drivers” on page 14-5
• “IVI Configuration Store” on page 14-15
• “Using IVI-C Class-Compliant Wrappers” on page 14-21
• “The Quick-Control Interfaces” on page 14-25
• “Quick-Control Oscilloscope Requirements” on page 14-26
• “Read Waveforms Using the Quick-Control Oscilloscope” on page 14-28
• “Read a Waveform Using a Tektronix Scope” on page 14-31
• “Quick-Control Oscilloscope Functions” on page 14-34
• “Quick-Control Oscilloscope Properties” on page 14-36
• “Quick-Control Function Generator Requirements” on page 14-38
• “Generate Standard Waveforms Using the Quick-Control Function Generator”

on page 14-40
• “Generate Arbitrary Waveforms Using Quick-Control Function Generator”

on page 14-43
• “Quick-Control Function Generator Functions” on page 14-45
• “Quick-Control Function Generator Properties” on page 14-48
• “Quick-Control RF Signal Generator Requirements” on page 14-52
• “Quick-Control RF Signal Generator Functions” on page 14-54
• “Quick-Control RF Signal Generator Properties” on page 14-56
• “Download and Generate Signals with RF Signal Generator” on page 14-59
• “Creating Shared Libraries or Standalone Applications When Using IVI-C or VXI”

on page 14-63

14

IVI Drivers Overview
In this section...
“Instrument Control Toolbox Software and IVI Drivers” on page 14-2
“IVI-C” on page 14-2

Instrument Control Toolbox Software and IVI Drivers

Instrument Control Toolbox software communicates with instruments using
Interchangeable Virtual Instrument (IVI) drivers. The toolbox supports IVI-C drivers,
provided by various instrument manufacturers.

For definitions and specifications of IVI drivers and their components, see the IVI
Foundation website at http://www.ivifoundation.org.

IVI-C

Instrument Control Toolbox software supports IVI-C drivers, with class-compliant and
instrument-specific functionality.

IVI class-compliant drivers support common functionality across a family of related
instruments. Use class-compliant drivers to access the basic functionality of an
instrument, and the ability to swap instruments without changing the code in your
application. With an IVI instrument-specific driver or interface, you can access the
unique functionality of the instrument. The instrument-specific driver generally does not
accommodate instrument substitution.

For IVI-C drivers, you can use IVI-C class drivers and IVI-C specific drivers. Device
objects you construct to call IVI-C class drivers offer interchangeability between similar
instruments, and work with all instruments consistent with that class driver. Device
objects you construct to call IVI-C specific drivers directly generally offer less
interchangeability, but provide access to the unique methods and properties of a specific
instrument.

14 Using IVI Drivers

14-2

http://www.ivifoundation.org

Instrument Interchangeability

Minimal Code Changes

With IVI class-compliant drivers, you can exchange instruments with minimal code
changes. You can write your code for an instrument from one manufacturer and then
swap it for the same type of instrument from another manufacturer. After editing the
configuration file that identifies a new instrument, driver, and the hardware address,
you can run your code without modifying it.

Effective Use of Interchangeability

To use the interchangeability of IVI effectively:

• Install drivers for both instruments of the same type (IVI-C).
• Ensure that both drivers implement the same instrument class. For example, both

must conform to the requirements for IviDmm or IviScope.
• When using IVI-C your program needs a Class Driver that instantiates the Class

Compliant Specific Driver and calls class-compliant functions in it.
• Ensure that your program does not call instrument-specific functions.

You can enhance your code to handle the differences between the instruments or drivers
you are using. You can still use these instruments interchangeably.

Examples of Interchangeability

The following diagram show interchangeability between instruments using IVI-C
drivers.

 Instrument Interchangeability

14-3

Using an IVI-C Class Compliant Driver

14 Using IVI Drivers

14-4

Getting Started with IVI Drivers

In this section...
“Introduction” on page 14-5
“Requirements to Work with MATLAB” on page 14-6
“Creating Shared Libraries or Standalone Applications When Using IVI-C or VXI” on
page 14-9
“MATLAB IVI Instrument Driver” on page 14-9
“Using MATLAB IVI Wrappers” on page 14-12

Introduction

You need to install IVI drivers and shared components before you can use them in
MATLAB. See Requirements on page 14-6 below for more information. You can use an
IVI driver in MATLAB in two different ways. The syntax for each method differs vastly.
Please refer to the MathWorks IVI Web page for more information. After installing the
necessary components, you can:

• Create and use a MATLAB IVI instrument driver as described in MATLAB® IVI
Instrument Driver on page 14-9. Here, you create a MATLAB IVI instrument
driver with .mdd extension using an IVI driver.

• Use a MATLAB IVI wrapper as described in Using MATLAB® IVI Wrappers on page
14-12. Here, MATLAB wraps the IVI driver. You can then use this wrapper with the
Instrument Control Toolbox software. This allows interchangeability and is the
preferred method if you are working with class-compliant drivers.

You can use the MATLAB IVI Wrappers provided with the Instrument Control
Toolbox software with IVI drivers of the same class. Supported IVI driver classes are:

• IviACPwr
• IviCounter
• IviDCPwr
• IviDigitizer
• IviDmm
• IviDownconverter

 Getting Started with IVI Drivers

14-5

http://www.mathworks.com/ivi

• IviFgen
• IviPwrMeter
• IviUpconverter
• IviRFSigGen
• IviScope
• IviSpecAn
• IviSwtch

You can also use MATLAB IVI wrappers provided by an instrument vendor that has
built in MATLAB support. Refer to the vendor documentation for more information
about using these drivers in MATLAB.

With the MATLAB IVI instrument driver, you construct a device object, which you use to
communicate with your instrument. With the MATLAB IVI wrapper, you communicate
with the instrument by directly accessing elements of the driver class.

Requirements to Work with MATLAB

Before you use IVI drivers in MATLAB, install:

• VISA
• IVI Shared components
• Required IVI drivers

Verifying VISA

Most IVI drivers require you to install VISA libraries on your system. The driver
installer software specifies certain VISA or other connectivity requirements.

To determine proper configuration of the necessary version of VISA on your system, at
the MATLAB Command Window, type:

instrhwinfo visa
ans =
 InstalledAdaptors: {'agilent'}
 JarFileVersion: 'Version 2.8.0''

14 Using IVI Drivers

14-6

The cell array returned for InstalledAdaptors indicates the type of VISA software
installed. A 1-by-0 cell array indicates that your system does not have VISA installed.
Possible InstalledAdaptors values are agilent, tek, and ni.

To install VISA, check the software installation disk provided with your instrument. This
disk can include VISA along with the IVI driver for the instrument. You can also
download VISA from the website of the instrument manufacturer.

An instrument driver can have other software requirements in addition to or instead of
VISA. Consult the driver documentation. The installer software itself can specify these
requirements.

Verifying IVI Shared Components

Many driver elements are common to a wide variety of instruments and not contained in
the driver itself. You install them separately as shared components. Sharing components
keeps the drivers as small and interchangeable as possible. You can use instrhwinfo to
determine whether you installed shared components on your system.
instrhwinfo ('ivi')
ans =
.
.
.
ConfigurationServerVersion: '1.6.0.10124'
 MasterConfigurationStore: 'C:\Program Files\IVI\Data\IviConfigurationStore.xml'
 IVIRootPath: 'C:\Program Files\IVI\'

ConfigurationServerVersion, MasterConfigurationStore, and IVIRootPath all
convey information related to installed shared components.
ConfigurationServerVersion indicates whether you installed IVI shared
components. If its value is an empty character vector, then you have not installed shared
components.

Verifying IVI Drivers

The instrument manufacturer usually provides the specific IVI driver, either on an
installation disk or as a Web download. Required VISA software and IVI shared
components could also come with the driver.

You can use instrhwinfo to find information on installed IVI drivers and shared
components.

instrhwinfo ('ivi')
ans =

 Getting Started with IVI Drivers

14-7

 LogicalNames: {'MainScope', 'FuncGen'}
 ProgramIDs: {'TekScope.TekScope','Agilent33250'}
 Modules: {'ag3325b', 'hpe363xa'}
ConfigurationServerVersion: '1.6.0.10124'
 MasterConfigurationStore: 'C:\Program Files\IVI\Data\
 IviConfigurationStore.xml'
 IVIRootPath: 'C:\Program Files\IVI\'

Logical names are associated with particular IVI drivers, but they do not necessarily
imply that the drivers are currently installed. You can install drivers that do not have a
LogicalName property set yet, or drivers whose LogicalName was removed.

Alternatively, use the Test & Measurement Tool to view the installation of IVI drivers
and the setup of the IVI configuration store. Open the tool by typing:

tmtool

Expand the Instrument Drivers node and click IVI. Click the Software Modules
tab. (For information on the other IVI driver tabs and settings in the Test &
Measurement Tool, see “IVI Configuration Store” on page 14-15.)

14 Using IVI Drivers

14-8

Creating Shared Libraries or Standalone Applications When Using IVI-
C or VXI

When using IVI-C or VXI Plug&Play drivers, executing your code will generate
additional files in the folder specified by executing the following code at the MATLAB
prompt:

fullfile(tempdir,'ICTDeploymentFiles',sprintf('R%s',version('-release')))

On all supported platforms, a file with the name
MATLABPrototypeFor<driverName>.m is generated, where <driverName> the name
of the IVI-C or VXI Plug&Play driver. With 64-bit MATLAB on Windows, a second file by
the name <driverName>_thunk_pcwin64.dll is generated. When creating your
deployed application or shared library, manually include these generated files. For more
information on including additional files refer to the MATLAB Compiler documentation.

MATLAB IVI Instrument Driver
• “Using a MATLAB IVI Instrument Driver” on page 14-9
• “Creating a MATLAB IVI Instrument Driver with makemid” on page 14-9
• “Downloading a MATLAB IVI Instrument Driver” on page 14-10
• “Importing MATLAB IVI Instrument Drivers” on page 14-10
• “Constructing Device Objects Using a MATLAB IVI Instrument Driver”

on page 14-11

Using a MATLAB IVI Instrument Driver

To use an IVI driver with a device object, you need a MATLAB IVI instrument driver
based upon the information in the original IVI driver. The MATLAB IVI instrument
driver, whether modified or not, acts as a wrapper to the IVI driver. These drivers,
however, do not support interchangeability. You can download or create the MATLAB
IVI instrument driver.

Creating a MATLAB IVI Instrument Driver with makemid

The command-line function makemid creates a MATLAB IVI instrument driver from an
IVI driver, saving the new driver in a file on disk. The syntax is:

makemid('driver','filename')

 Getting Started with IVI Drivers

14-9

driver is the original IVI driver name (identified by instrhwinfo or the Test &
Measurement Tool), and filename is the MATLAB IVI instrument driver name. For
driver use a Module name, a ProgramID, or a LogicalNames value. See the makemid
reference page for full details on this function.

To customize the driver, open the new driver in the MATLAB Instrument Driver Editor,
modify it as required, and save it.

Tip Do not uninstall the original IVI driver when you create a MATLAB IVI instrument
driver based on an IVI driver. You need the IVI driver in order to use the new MATLAB
IVI instrument driver.

Note When you create a MATLAB IVI instrument driver without specifying an interface
name, makemid uses the instrument-specific interface as the default interface.

Downloading a MATLAB IVI Instrument Driver

Go to the MATLAB Central website and search for an appropriate MATLAB IVI
instrument driver for your instrument. You can look for wrappers using the instrument
drivers tag in the File Exchange area.

To use the downloaded MATLAB IVI instrument driver, you also need the IVI driver for
the installed instrument. Find this driver on the website of the instrument
manufacturer.

Importing MATLAB IVI Instrument Drivers

You can import an IVI driver using the MATLAB Instrument Driver Editor, and create a
MATLAB IVI instrument driver. Evaluate or set the functions and properties of the
driver, and save the modified MATLAB IVI instrument driver for further use.

1 Open the MATLAB Instrument Driver Editor by typing midedit.
2 Select File > Import. The Import Driver dialog box opens.
3 Select the IVI driver that you want to import, and click Import.

The MATLAB Instrument Driver Editor loads the driver and displays its
components.

14 Using IVI Drivers

14-10

With the MATLAB Instrument Driver Editor, you can do the following:

• Create, delete, modify, and rename properties, functions, or groups.
• Add code around instrument commands for analysis.
• Add, create, connect, and disconnect code.
• Save the driver as a MATLAB IVI instrument driver.

For more information, see “MATLAB Instrument Driver Editor Overview” on page 19-
2.

Tip Do not uninstall the original IVI driver when you create a MATLAB IVI instrument
driver based on an IVI driver. You need the IVI driver in order to use the new MATLAB
IVI instrument driver.

Constructing Device Objects Using a MATLAB IVI Instrument Driver

Once you have the MATLAB IVI instrument driver, create the device object with the file
name of the MATLAB IVI instrument driver as an argument for icdevice. The
following examples show the creation of the MATLAB IVI instrument driver (all
with .mdd extensions) and the construction of device objects to use them.

 Getting Started with IVI Drivers

14-11

See the icdevice and makemid reference pages for full details on these functions.

In the following example, makemid uses a LogicalNames value to identify an IVI driver,
then creates a MATLAB IVI instrument driver. Because LogicalNames is associated
with a driver session and hardware asset, you do not need to pass a RsrcName to
icdevice when constructing the device object.

makemid('MainScope','MainScope.mdd');
obj = icdevice('MainScope.mdd');

In the next example, makemid uses a ProgramID to reference an IVI driver, then creates
a MATLAB IVI instrument driver. The device object requires a RsrcName in addition to
the file name of the MATLAB IVI instrument driver.

makemid('TekScope.TekScope','TekScopeML.mdd');
obj = icdevice('TekScopeML.mdd','GPIB0::13::INSTR');

In the next example, makemid uses a software Module to reference an IVI-C driver, then
creates a MATLAB IVI instrument driver. The device object requires a RsrcName in
addition to the file name of the MATLAB IVI instrument driver.

makemid('ag3325b','Ag3325bML.mdd');
obj = icdevice('Ag3325bML.mdd','ASRL1::INSTR');

In the next example, makemid creates a MATLAB IVI instrument driver based on the
IVI-C class driver ivifgen. The device object uses the MATLAB IVI instrument driver
file name and the logical name of the driver from the IVI configuration store.

makemid('ivifgen','FgenML.mdd');
obj = icdevice('FgenML.mdd','FuncGen');

Using MATLAB IVI Wrappers

MATLAB IVI wrappers work well with class-compliant drivers.

This example shows how to connect to an instrument and read a waveform using a
MATLAB IVI Wrapper.

The instrument in this example is an Agilent Technologies' MSO6014 mixed signal
oscilloscope, with an Agilent546XX driver.
%Create the object
myScope = instrument.ivicom.IviScope('Agilent546XX.Agilent546XX');

14 Using IVI Drivers

14-12

%Connect to the instrument using the VISA resource string
myScope.Initialize('TCPIP0::xxx-xxxx.xxx.<yourdomain.com>::inst0::INSTR',false,
false,'simulate=false');

%Access the Measeurements Collection
myScopeMeasurements = myScope.Measurements

%Configure measurement 1
myScopeMeasurements.AutoSetup;
name = myScopeMeasurements.Name(1);
myScopeMeasurement1 = myScopeMeasurements.Item(name);

%Access the Channels collection
myScopeChannels = myScope.Channels;

%Configure channel 1
name = myScopeChannels.Name(1);
myScopeChannel1= myScopeChannels.Item(name)
myScopeChannel1.Enabled = 1;

%Configure a trigger
myScope.Trigger.Source = 'Channel1';
myScope.Trigger.Level = 1.0;
myScope.Trigger.Edge.Slope = 'IviScopeTriggerSlopePositive';

%Start the measurement and get the data
myScopeMeasurements.Initiate;
myWaveform = myScopeMeasurement1.FetchWaveform;

%Plot the data
plot(myWaveform);

%Close and delete the object
myScope.Close;
myScope.delete

 Getting Started with IVI Drivers

14-13

Plot the Waveform Read Using the MATLAB IVI Wrapper

14 Using IVI Drivers

14-14

IVI Configuration Store

In this section...
“Benefits of an IVI Configuration Store” on page 14-15
“Components of an IVI Configuration Store” on page 14-15
“Configuring an IVI Configuration Store” on page 14-16

Benefits of an IVI Configuration Store

By providing a way to configure the relationship between drivers and I/O references, an
IVI configuration store greatly enhances instrument interchangeability.

Suppose your code uses only a specified driver to communicate with one type of
instrument at a fixed location. If you change the instrument model, instrument location,
or driver, you would have to modify the code to accommodate that change.

An IVI configuration store offers the ability to accommodate different instrument models,
drivers, or ports, without having to modify your code. This interchangeability is
especially useful when you use code that cannot be easily modified.

Components of an IVI Configuration Store

The components of an IVI configuration store identify:

• Locations of the instruments to communicate with
• Software modules used to control the instruments
• Associations of software modules used with instruments at specific locations

Software
Module

Hardware
Asset

Driver Session

Logical
Name

IVI Configuration Store

I/O
Code

Instrument

 IVI Configuration Store

14-15

Component Description
Software module A software module is instrument-specific, and contains the

commands and functions necessary to communicate with the
instrument. The instrument vendor commonly provides software
modules, which you cannot edit from the MATLAB Command
Window.

Hardware asset A hardware asset identifies a communication port connected the
instrument. Configure this component with an
IOResourceDescriptor. Usually you have one hardware asset
per connection location (protocol type, bus address, and so on).

Driver session A driver session makes the association between a software module
and a hardware asset. Generally, you have a driver session for each
instrument at each of its possible locations.

Identical instruments connected at different locations can use the
same software module, but because they have different hardware
assets, they require different driver sessions.

Different kinds of instruments connected to the same location (at
different times) use the same hardware asset, but can have
different software modules. Therefore, they require different driver
sessions.

Logical name A logical name is a configuration store component that provides
access to a driver session. You can interpret a logical name as a
configurable pointer to a driver session. In a typical setup, the code
communicates with an instrument via a logical name. If the code
must communicate with a different instrument (for example, a
similar scope at a different location), update only the logical name
within the IVI configuration store to point to the new driver
session. You need not rewrite any code because it uses the same
logical name.

Configuring an IVI Configuration Store

Using the GUI

You can use the Test & Measurement Tool to examine or configure your IVI
configuration store. Open the tool by typing:

14 Using IVI Drivers

14-16

tmtool

Expand the Instrument Drivers node and click IVI.

You see a tab for each type of IVI configuration store element. This figure shows the
available driver sessions in the current IVI configuration store. For the selected driver
session, you can use any available software module or hardware asset. This figure shows
the configuration for the driver session TekScope.DriverSession, which uses the
software module TekScope.Software and the hardware asset TekScope.Hardware.

Using the Command Line

Alternatively, you can use command-line functions to examine and configure your IVI
configuration store. To see what IVI configuration store elements are available, use
instrhwinfo to identify the existing logical names.

instrhwinfo('ivi')
ans =
 LogicalNames: {'MainScope', 'FuncGen'}

 IVI Configuration Store

14-17

 ProgramIDs: {'TekScope.TekScope','Agilent33250'}
 Modules: {'ag3325b', 'hpe363xa'}
ConfigurationServerVersion: '1.6.0.10124'
 MasterConfigurationStore: 'C:\Program Files\IVI\Data\
 IviConfigurationStore.xml'
 IVIRootPath: 'C:\Program Files\IVI\'

Use instrhwinfo with a logical name as an argument to see the details of the
configuration.

instrhwinfo('ivi','MainScope')
ans =
 DriverSession: 'TekScope.DriverSession'
 HardwareAsset: 'TekScope.Hardware'
 SoftwareModule: 'TekScope.Software'
 IOResourceDescriptor: 'GPIB0::13::INSTR'
SupportedInstrumentModels: 'TekScope 5000, 6000 and 7000 series'
 ModuleDescription: 'TekScope software module desc'
 ModuleLocation: ''

You can use the command line to change the configuration store. Here is an example of
changing it programmatically.
% Construct a configStore.
configStore = iviconfigurationstore;

% Set up the hardware asset with name myScopeHWAsset, and resource descriptor
% TCPIP0::a-m6104a-004598::INSTR.
add(configStore, 'HardwareAsset', 'myScopeHWAsset', 'TCPIP0::a-m6104a-004598::INSTR');

% Add a driver session with name myScopeSession, and use the asset created in the step above.
% Ag546XX is the Agilent driver.
add(configStore, 'DriverSession', 'myScopeSession', 'Ag546XX', 'myScopeHWAsset');

% Add a logical name to the configStore, with name myScope and driver session
% named myScopeSession.
add(configStore, 'LogicalName', 'myScope', 'myScopeSession');

% Save the changes to the IVI configuration store data file.
commit(configStore);

% You can verify that the steps you just performed worked.
logicalNameInfo = instrhwinfo('ivi', 'myscope')

Basic IVI Configuration Store

Following is an example of configuration used by data_analyzer.m.

14 Using IVI Drivers

14-18

MainScope

IVI Configuration Store

GPIB0::13::INSTR
data_analyzer.m

TekScope.DriverSession

TekScope.Software

TekScope.Hardware

Tektronix
5000 Series
Oscilloscope

Create and configure elements in the IVI configuration store using the IVI configuration
store object methods add, commit, remove, and update. For further details, see the
reference pages for these methods.

IVI Configuration Store with Several Interchangeable Elements

The following figure shows an example of an IVI configuration store with several
interchangeable components. Code 1 requires access to the oscilloscopes at two different
locations (hardware asset X and hardware asset Y). The scopes are similar, so they use
the same software module S. Here, the scopes are at different locations (or the same
scope connected to two different locations at different times). Therefore, each
configuration requires its own driver session, in this example, driver session A and driver
session B.

Software
Module S

Hardware
Asset X

Software
Module S

Hardware
Asset Y

Software
Module G

Hardware
Asset Z

Driver Session A

Driver Session B

Driver Session C

Logical
Name 1

Logical
Name 2

IVI Configuration Store

I/O

I/O

I/O

Code 1

Code 2
1.000

 IVI Configuration Store

14-19

Write Code 1 to access logical name 1. You configure the name in the IVI configuration
store to access driver session A or driver session B (but not both at the same time).
Because you select the driver session in the IVI configuration store, you need not alter
the code to change access from one scope to the other.

14 Using IVI Drivers

14-20

Using IVI-C Class-Compliant Wrappers

In this section...
“IVI-C Wrappers” on page 14-21
“Prerequisites” on page 14-21
“Creating Shared Libraries or Standalone Applications When Using IVI-C or VXI” on
page 14-22
“Reading Waveforms Using the IVI-C Class Compliant Interface” on page 14-22
“IVI-C Class Compliant Wrappers in Test & Measurement Tool” on page 14-23

IVI-C Wrappers

The IVI-C wrappers provide an interface to MATLAB for instruments running on IVI-C
class-compliant drivers.

This documentation example uses a specific instrument, an Agilent MSO6104A
oscilloscope. This feature works with any IVI-C class-compliant instrument. You can
follow the basic steps, using your particular instrument if the device is IVI-C class-
compliant.

Prerequisites

To use the wrapper you must have the following software installed.

• Windows 64-bit
• VISA shared components
• VISA

The following example uses Agilent VISA, but you can use any version of VISA.
• National Instruments compliance package NICP 4.1
• Your instrument driver

You can use instrhwinfo to confirm that these software modules are installed.

% Check that the software is properly installed.
instrhwinfo('ivi')

 Using IVI-C Class-Compliant Wrappers

14-21

Creating Shared Libraries or Standalone Applications When Using IVI-
C or VXI

When using IVI-C or VXI Plug&Play drivers, executing your code will generate
additional files in the folder specified by executing the following code at the MATLAB
prompt:

fullfile(tempdir,'ICTDeploymentFiles',sprintf('R%s',version('-release')))

On all supported platforms, a file with the name
MATLABPrototypeFor<driverName>.m is generated, where <driverName> the name
of the IVI-C or VXI Plug&Play driver. With 64-bit MATLAB on Windows, a second file by
the name <driverName>_thunk_pcwin64.dll is generated. When creating your
deployed application or shared library, manually include these generated files. For more
information on including additional files refer to the MATLAB Compiler documentation.

Reading Waveforms Using the IVI-C Class Compliant Interface

This example shows the general workflow to use with an IVI-C class-compliant device.
This example uses a specific instrument, an Agilent MSO6104A oscilloscope. This feature
works with any IVI-C class-compliant instrument. You can follow the basic steps using
your particular instrument if it is IVI-C class-compliant.

1 Ensure all necessary software is installed. See “Prerequisites” on page 14-21 for the
list.

2 Ensure that your instrument is recognized by the VISA utility. In this case, open
Agilent Connectivity Expert and make sure it recognizes the oscilloscope.

3 Set up the logical name using the Configuration Store. The VISA resource string
shown in this code was acquired from the VISA utility in step 2.
% Construct a configStore.
configStore = iviconfigurationstore;

% Set up the hardware asset called myScopeHWAsset, and resource description
 TCPIP0::a-m6104a-004598::INSTR.
add(configStore, 'HardwareAsset', 'myScopeHWAsset', 'TCPIP0::a-m6104a-004598::INSTR');

% Add a driver session called myScopeSession, and use the asset created in the
 step above. Ag546XX is the Agilent driver version.
add(configStore, 'DriverSession', 'myScopeSession', 'Ag546XX', 'myScopeHWAsset');

% Add a logical name to the configStore called myScope and driver session called
 myScopeSession.

14 Using IVI Drivers

14-22

add(configStore, 'LogicalName', 'myScope', 'myScopeSession');

% Save the changes to the IVI configuration store data file.
commit(configStore);

% You can verify that the steps you just performed worked.
logicalNameInfo = instrhwinfo('ivi', 'myscope')

For more information about the configuration store, see “IVI Configuration Store” on
page 14-15.

4 Create an instance of the scope.

% Instantiate an instance of the scope.
ivicScope = instrument.ivic.IviScope();

5 Connect to the instrument.

% Open the hardware session.
ivicScope.init('myScope', true, true);

6 Communicate with the instrument. For example, read a waveform.
% Use the AutoSetup method to automatically set up the oscilloscope.
ivicScope.Configuration.AutoSetup();

% Create a record length variable.
recordLength = ivicScope.Acquisition.Horizontal_Record_Length;

% Preallocate buffer to store the data read from the scope.
waveformArray = zeros(1, recordLength);

% Read a waveform with channel name set to channel1 and timeout to 1000.
[waveformArray,actualPoints,initiaX,xIncrement] = ivicScope.WaveformAcquisition.
 ReadWaveform('channel1', recordLength, 1000, waveformArray);

% Plot the waveform and assign labels for the plot.
plot(waveformArray);
xlabel('Samples');
ylabel('Voltage');

7 After configuring the instrument and retrieving its data, close the session and
remove it from the workspace.

ivicScope.close();
clear ivicScope;

IVI-C Class Compliant Wrappers in Test & Measurement Tool

You can also use the IVI-C Wrappers functionality from the Test & Measurement Tool.
View the IVI-C nodes by setting a preference in MATLAB.

 Using IVI-C Class-Compliant Wrappers

14-23

1 In MATLAB, on the Home tab, in the Environment section, click Preferences.
Then select Instrument Control in the Preferences dialog box.

2 Select the Show IVI Instruments in TMTool option in the IVI Instruments
section.

If you do not have the required software installed, you will get a message indicating
that. See “Prerequisites” on page 14-21 for the list of required software.

3 Start the Test & Measurement Tool (using the tmtool function), and the new IVI
Instruments node appears under Instrument Drivers.

For information on using it in the Test & Measurement Tool, see the Help within the tool
by selecting the IVI Instruments node in the tree once it is visible after setting the
MATLAB preference.

14 Using IVI Drivers

14-24

The Quick-Control Interfaces
The Quick-Control interfaces are used to control oscilloscopes, function generators, or RF
signal generators that use an underlying IVI-C driver. You do not have to deal directly
with the driver in these easy-to-use interfaces.

There are three Quick-Control interfaces:

• Quick-Control Oscilloscope
• Quick-Control Function Generator
• Quick-Control RF Signal Generator

The Instrument Control Toolbox Support Package for National Instruments VISA and
ICP Interfaces contains many of the components required for these interfaces. However,
you can install the components independent of the support package. See the following for
requirements for each interface.

• “Quick-Control Oscilloscope Requirements” on page 14-26
• “Quick-Control Function Generator Requirements” on page 14-38
• “Quick-Control RF Signal Generator Requirements” on page 14-52

 The Quick-Control Interfaces

14-25

Quick-Control Oscilloscope Requirements

You can use the Quick-Control Oscilloscope for any oscilloscope that uses an underlying
IVI-C driver. However, you do not have to directly deal with the underlying driver. You
can also use it for Tektronix oscilloscopes. This oscilloscope object is an easy to use
interface.

The documentation example uses a specific instrument, an Agilent MSO6104
oscilloscope. This feature works with any IVI-C class oscilloscope. You can follow the
basic steps, using your particular instrument.

To use the Quick-Control Oscilloscope for an IVI-C scope, you must have the following
software installed. Most components are installed by the Instrument Control Toolbox
Support Package for National Instruments VISA and ICP Interfaces. To install the
support package, see “Install the National Instruments VISA and ICP Interfaces Support
Package” on page 15-16.

• Windows 64-bit platforms
• VISA shared components (installed by the support package)
• VISA (installed by the support package)

Note, the examples use Agilent VISA, but you can use any version of VISA.
• National Instruments IVI compliance package NICP 4.1 or later (installed by the

support package)
• Your instrument’s device-specific driver. If you do not already have it, go to your

instrument vendor's website and download the IVI-C driver for your specific
instrument.

You can use instrhwinfo to confirm that the required software is installed.

% Check that the software is properly installed.
instrhwinfo('ivi')

14 Using IVI Drivers

14-26

See Also

Related Examples
• “Read Waveforms Using the Quick-Control Oscilloscope” on page 14-28
• “Read a Waveform Using a Tektronix Scope” on page 14-31
• “Quick-Control Oscilloscope Functions” on page 14-34
• “Quick-Control Oscilloscope Properties” on page 14-36

 See Also

14-27

Read Waveforms Using the Quick-Control Oscilloscope

This example shows the general workflow to use for the Quick-Control Oscilloscope. This
example uses a specific instrument, an Agilent MSO6104 oscilloscope. This feature works
with any oscilloscope using an IVI-C driver. You can follow the basic steps using your
particular scope. For use with a Tektronix scope, see Read Waveforms Using a Tektronix
Scope.

1 Ensure all necessary software is installed. See “Quick-Control Oscilloscope
Requirements” on page 14-26 for the list.

2 Ensure that your instrument is recognized by the VISA utility. In this case, open
Agilent Connectivity Expert and make sure it recognizes the oscilloscope.

3 Create an instance of the oscilloscope.
% Instantiate an instance of the scope.
myScope = oscilloscope()

4 Discover available resources. A resource string is an identifier to the instrument.
You must set it before connecting to the instrument.
% Find resources.
availableResources = resources(myScope)

This returns a resource string or an array of resource strings.
availableResources =
 TCPIP0::a-m6104a-004598.dhcp.mathworks.com::inst0::INSTR

5 Connect to the scope.

If multiple resources are available, use the VISA utility to verify the correct resource
and set it.
myScope.Resource = 'TCPIP0::a-m6104a-004598::inst0::INSTR';

% Connect to the scope.
connect(myScope);

6 Configure the oscilloscope.

You can configure any of the scope’s properties that are able to be set. In this
example enable channel 1 and configure various acquisition settings as shown.
% Automatically configure the scope based on the input signal.
autoSetup(myScope);

14 Using IVI Drivers

14-28

% Set the acquisition time to 0.01 second.
myScope.AcquisitionTime = 0.01;

% Set the acquisition to collect 2000 data points.
myScope.WaveformLength = 2000;

% Set the trigger mode to normal.
myScope.TriggerMode = 'normal';

% Set the trigger level to 0.1 volt.
myScope.TriggerLevel = 0.1;

% Enable channel 1.
enableChannel(myScope, 'CH1');

% Set the vertical coupling to AC.
setVerticalCoupling (myScope, 'CH1', 'AC');

% Set the vertical range to 5.0.
setVerticalRange (myScope, 'CH1', 5.0);

7 Communicate with the instrument. For example, read a waveform.

In this example, the readWaveform function returns the waveform that was
acquired using the front panel of the scope. The function can also initiate an
acquisition on the enabled channel and then return the waveform after the
acquisition. For examples on all the use cases for this function, see getWaveform.

% Acquire the waveform.
waveformArray = readWaveform(myScope);

% Plot the waveform and assign labels for the plot.
plot(waveformArray);
xlabel('Samples');
ylabel('Voltage');

8 After configuring the instrument and retrieving its data, close the session and
remove it from the workspace.

disconnect(myScope);
clear myScope;

For a list of supported functions for use with Quick-Control Oscilloscope, see “Quick-
Control Oscilloscope Functions” on page 14-34.

 Read Waveforms Using the Quick-Control Oscilloscope

14-29

See Also

Related Examples
• “Read a Waveform Using a Tektronix Scope” on page 14-31
• “Quick-Control Oscilloscope Functions” on page 14-34
• “Quick-Control Oscilloscope Properties” on page 14-36

14 Using IVI Drivers

14-30

Read a Waveform Using a Tektronix Scope

Reading a waveform with a Tektronix scope using Quick-Control Oscilloscope is basically
the same workflow as described in the Read Waveforms Using Quick-Control
Oscilloscope example using an Agilent scope with VISA. But the resource and driver
information is different.

If you use the resources function, instead of getting a VISA resource string as shown in
step 4 of the previous example, you will get the interface resource of the Tektronix scope.
For example:

% Find resources.
availableResources = resources(myScope)

This returns the interface resource information.

availableResources =
 GPIBO::AGILENT::7::10

Where gpib is the interface being used, agilent is the interface type for the adaptor
that the Tektronix scope is connected to, and the numbers are interface constructor
parameters.

If you use the drivers function, you get information about the driver and its supported
instrument models. For example:

% Get driver information.
driverlist = drivers(myScope)

This returns the driver and instrument model information.

Driver: tekronix
Supported Models:
 TDS200, TDS1000, TDS2000, TDS1000B, TDS2000B, TPS2000
 TDS3000, TDS3000B, MSO4000, DPO4000, DPO7000, DPO7000B

This example shows the general workflow to use for the Quick-Control Oscilloscope for a
Tektronix scope. This feature works with any supported oscilloscope model. You can
follow the basic steps using your particular scope.

1 Create an instance of the oscilloscope.

 Read a Waveform Using a Tektronix Scope

14-31

% Instantiate an instance of the scope.
myScope = oscilloscope()

2 Discover available resources. A resource string is an identifier to the instrument.
You must set it before connecting to the instrument.

% Find resources.
availableResources = resources(myScope)

This returns a resource string or an array of resource strings.

availableResources =
 GPIBO::AGILENT::7::10

Where gpib is the interface being used, agilent is the interface type for the
adaptor that the Tektronix scope is connected to, and the numbers are interface
constructor parameters.

3 Connect to the scope.

% Connect to the scope.
connect(myScope);

4 Configure the oscilloscope.

You can configure any of the scope’s properties that are able to be set. In this
example enable channel 1 and set acquisition time as shown. You can see examples
of other acquisition parameters in step 6 of the previous example.
% Set the acquisition time to 0.01 second.
myScope.AcquisitionTime = 0.01;

% Set the acquisition to collect 2000 data points.
set(myScope, 'WaveformLength', 2000);

% Enable channel 1.
enableChannel(myScope, 'CH1');

5 Communicate with the instrument. For example, read a waveform.

In this example, the readWaveform function returns the waveform that was
acquired using the front panel of the scope. The function can also initiate an
acquisition on the enabled channel and then return the waveform after the
acquisition. For examples on all the use cases for this function, see getWaveform.

% Acquire the waveform.
waveformArray = readWaveform(myScope);

14 Using IVI Drivers

14-32

% Plot the waveform and assign labels for the plot.
plot(waveformArray);
xlabel('Samples');
ylabel('Voltage');

6 After configuring the instrument and retrieving its data, close the session and
remove it from the workspace.

disconnect(myScope);
clear myScope;

For a list of supported functions for use with Quick-Control Oscilloscope, see “Quick-
Control Oscilloscope Functions” on page 14-34.

See Also

Related Examples
• “Read Waveforms Using the Quick-Control Oscilloscope” on page 14-28
• “Quick-Control Oscilloscope Functions” on page 14-34
• “Quick-Control Oscilloscope Properties” on page 14-36

 See Also

14-33

Quick-Control Oscilloscope Functions

The oscilloscope function can use the following special functions, in addition to
standard functions such as connect and disconnect.
Function Description
autoSetup Automatically configures the instrument based on the input

signal.

autoSetup(myScope);
disableChannel Disables the oscilloscope's channel(s).

 disableChannel(myScope, 'Channel1');
 disableChannel(myScope, {'Channel1', 'Channel2'});

enableChannel Enables the oscilloscope's channel(s) from which
waveform(s) will be retrieved.
 enableChannel(myScope, 'Channel1');
 enableChannel(myScope, {'Channel1', 'Channel2'});

drivers Returns a list of available drivers with their supported
instrument models.

driverlist = drivers(myScope);
resources Retrieves a list of available resources of instruments. It

returns a list of available VISA resource strings when using
an IVI-C scope. It returns the interface resource information
when using a Tektronix scope.

res = resources(myScope);
getVerticalCoupling Returns the value of how the oscilloscope couples the input

signal for the selected channel name as a MATLAB
character vector. Possible values returned are 'AC', 'DC',
and 'GND'.
 VC = getVerticalCoupling (myScope, 'Channel1');

getVerticalOffset Returns the location of the center of the range for the
selected channel name as a MATLAB character vector. The
units are volts.
 VO = getVerticalOffset (myScope, 'Channel1');

14 Using IVI Drivers

14-34

Function Description
getVerticalRange Returns the absolute value of the input range the

oscilloscope can acquire for selected channel name as a
MATLAB character vector. The units are volts.
 VR = getVerticalRange (myScope, 'Channel1');

readWaveform Returns the waveform(s) displayed on the scope screen.
Retrieves the waveform(s) from enabled channel(s).

w = readWaveform(myScope);
reset Resets the device to factory default state.

reset(myScope);
setVerticalCoupling Specifies how the oscilloscope couples the input signal for

the selected channel name as a MATLAB character vector.
Values are 'AC', 'DC', and 'GND'.
 setVerticalCoupling (myScope, 'Channel1', 'AC');

setVerticalOffset Specifies the location of the center of the range for the
selected channel name as a MATLAB character vector. For
example, to acquire a sine wave that spans from 0.0 to 10.0
volts, set this attribute to 5.0 volts.
 setVerticalOffset (myScope, 'Channel1', 5);

setVerticalRange Specifies the absolute value of the input range the
oscilloscope can acquire for the selected channel name as a
MATLAB character vector. The units are volts.
 setVerticalRange (myScope, 'Channel1', 10);

 Quick-Control Oscilloscope Functions

14-35

Quick-Control Oscilloscope Properties

The Quick-Control Oscilloscope oscilloscope function can use the following properties.
Property Description
ChannelNames Read-only property that provides available channel

names in a cell array.
ChannelsEnabled Read-only property that provides currently enabled

channel names in a cell array.
Status Read-only property that indicates the communication

status.

Valid values are open or closed.
Timeout Use to get or set a timeout value.

Value cannot be negative number. Default is 10 seconds.
AcquisitionTime Use to get or set acquisition time value. Used to control

the time in seconds that corresponds to the record length.

Value must be a positive, finite number.
AcquisitionStartDelay Use to set or get the length of time in seconds from the

trigger event to first point in waveform record.

If positive, the first point in the waveform occurs after the
trigger. If negative, the first point in the waveform occurs
before the trigger.

TriggerMode Use to set the triggering behavior. Values are:

'normal' – the oscilloscope waits until the trigger the
user specifies occurs.

'auto' – the oscilloscope automatically triggers if the
configured trigger does not occur within the oscilloscope’s
timeout period.

TriggerSlope Use to set or get trigger slope value.

Valid values are falling or rising.

14 Using IVI Drivers

14-36

Property Description
TriggerLevel Specifies the voltage threshold in volts for the trigger

control.
TriggerSource Specifies the source the oscilloscope monitors for a

trigger. It can be channel name or other values.
Resource Set up before connecting to instrument. Set with value of

your instrument’s resource string, for example:
set(myScope, 'Resource',
 'TCPIP0::a-m6104a-004598::inst0::INSTR');

DriverDetectionMode Optionally used to set up criteria for connection.

Valid values are auto or manual. Default is auto.
auto means you do not have to set a driver name before
connecting to an instrument.

If set to manual, a driver name must be provided before
connecting.

Driver Use only if set DriverDetectionMode to manual. Then
use to give driver name. Only use if driver name cannot
be figured out programmatically.

 Quick-Control Oscilloscope Properties

14-37

Quick-Control Function Generator Requirements
You can use the Quick-Control Function Generator for any function generator that uses
an underlying IVI-C driver. However, you do not have to directly deal with the
underlying driver. This easy-to-use function generator, or fgen, is used for simplified fgen
control and waveform generation.

Create the Quick-Control Function Generator object using the Instrument Control
Toolbox fgen function. It simplifies controlling function generators and performs
arbitrary waveform generations without dealing with the underlying drivers.

You can use the Quick-Control Function Generator for any function generator that uses
an underlying IVI-C driver. However, you do not have to directly deal with the
underlying driver. This fgen object is easy to use.

The documentation examples use a specific instrument, a Tektronix AFG 3022B function
generator. This feature works with any instrument that has IVI-C fgen class drivers. You
can follow the basic steps, using your particular instrument.

To use the Quick-Control Function Generator for an IVI-C fgen, ensure the following
software is installed. Most components are installed by the Instrument Control Toolbox
Support Package for National Instruments VISA and ICP Interfaces. To install the
support package, see “Install the National Instruments VISA and ICP Interfaces Support
Package” on page 15-16.

• Windows 64-bit platforms
• VISA shared components (installed by the support package)
• VISA (installed by the support package)

Note, the examples use Agilent VISA, but you can use any vendor’s implementation of
VISA.

• National Instruments IVI compliance package NICP 4.1 or later (installed by the
support package)

• Your instrument’s device-specific driver. If you do not already have it, go to your
instrument vendor's website and download the IVI-C driver for your specific
instrument.

You can use instrhwinfo to confirm that the required software is installed.

14 Using IVI Drivers

14-38

% Check that the software is properly installed.
instrhwinfo('ivi')

See Also

Related Examples
• “Generate Standard Waveforms Using the Quick-Control Function Generator” on

page 14-40
• “Generate Arbitrary Waveforms Using Quick-Control Function Generator” on page

14-43
• “Quick-Control Function Generator Functions” on page 14-45
• “Quick-Control Function Generator Properties” on page 14-48

 See Also

14-39

Generate Standard Waveforms Using the Quick-Control Function
Generator

This example shows how to use the Quick-Control Function Generator to generate a
standard waveform. To generate an arbitrary waveform, see Generate Arbitrary
Waveforms Using Quick-Control Function Generator. Quick-Control Function Generator
works with any function generator using an IVI-C driver as long as the instrument and
the driver support the functionality. You can follow the basic steps using your particular
function generator. This example uses Agilent® VISA, but you can use any vendor's
implementation of VISA.

In this example, an electronic test engineer wants to create a simple sine waveform to
test the clock operating range of a digital circuit.

1 Ensure all necessary software is installed. See “Quick-Control Function Generator
Requirements” on page 14-38 for the list.

2 Create an instance of the function generator.

% Instantiate an instance of the fgen.
myFGen = fgen();

3 Discover available resources. A resource string is an identifier to the instrument.
You must set it before connecting to the instrument.

% Find resources.
availableResources = resources(myFGen)

This returns a resource string or an array of resource strings, for example:

ans =

ASRL::COM1
GPIB0::INTFC
GPIB0::10::INSTR
PXI0::MEMACC
TCPIP0::172.28.16.153::inst0::INSTR
TCPIP0::172.28.16.174::inst0::INSTR

4 Set the resource for the function generator you want to communicate with.

myFGen.Resource = 'GPIB0::10::INSTR';

14 Using IVI Drivers

14-40

5 Connect to the function generator.

connect(myFGen);
6 Specify the channel name from which the function generator produces the waveform.

selectChannel(myFGen, '1');
7 Configure the function generator.

You can configure any of the instrument’s properties that are settable. Configure the
waveform to be a continuous sine wave and then configure various settings as
shown.
% Set the type of waveform to a sine wave.
myFGen.Waveform = 'sine';

% Set the output mode to continuous.
myFGen.Mode = 'continuous';

% Set the load impedance to 50 Ohms.
myFGen.OutputImpedance = 50;

% Set the frequency to 2500 Hz.
myFGen.Frequency = 2500;

% Set the amplitude to 1.2 volts.
myFGen.Amplitude = 1.2;

% Set the offset to 0.4 volts.
myFGen.Offset = 0.4;

8 Enable signal generation with the instrument, for example, output signals.

In this example, the enableOutput function enables the function generator to
produce a signal that appears at the output connector.

% Enable the output of signals.
enableOutput(myFGen);

When you are done, disable the output.

% Disable the output of signals.
disableOutput(myFGen);

9 After configuring the instrument and generating a signal, close the session and
remove it from the workspace.

disconnect(myFGen);
clear myFgen;

 Generate Standard Waveforms Using the Quick-Control Function Generator

14-41

For a list of supported functions for use with Quick-Control Function Generator, see
“Quick-Control Function Generator Functions” on page 14-45.

See Also

Related Examples
• “Generate Arbitrary Waveforms Using Quick-Control Function Generator” on page

14-43
• “Quick-Control Function Generator Functions” on page 14-45
• “Quick-Control Function Generator Properties” on page 14-48

14 Using IVI Drivers

14-42

Generate Arbitrary Waveforms Using Quick-Control Function
Generator

This example shows how to use Quick-Control Function Generator to generate an
arbitrary waveform. To generate a standard waveform, see Generate Standard
Waveforms Using Quick-Control Function Generator. Quick-Control Function Generator
works with any function generator using an IVI-C driver as long as the instrument and
the driver support the functionality. You can follow the basic steps using your particular
function generator. This example uses Agilent® VISA, but you can use any vendor's
implementation of VISA.

In this example, an electronic design engineer wants to generate a complex waveform
with MATLAB, then download them into the function/arbitrary waveform generator and
output them one after the other, and then finally remove the downloaded waveforms
afterward. In this example we are using the GPIB interface.

1 Ensure all necessary software is installed. See “Quick-Control Function Generator
Requirements” on page 14-38 for the list.

2 Create an instance of the function generator.

% Instantiate an instance of the fgen.
myFGen = fgen();

3 Set the resource.

myFGen.Resource = 'GPIB0::10::INSTR';
4 Connect to the function generator.

connect(myFGen);
5 Specify the channel name from which the function generator produces the waveform.

selectChannel(myFGen, '1');
6 Configure the function generator.

You can configure any of the instrument’s properties that are settable. Configure the
waveform to be a continuous arbitrary wave.
% Set the type of waveform to an arbitrary wave.
myFGen.Waveform = 'arb';

% Set the output mode to continuous.
myFGen.Mode = 'continuous';

 Generate Arbitrary Waveforms Using Quick-Control Function Generator

14-43

7 Communicate with the instrument.

In this example, create the waveform, then download it to the function generator
using the downloadWaveform function. Then enable the output using the
enableOutput function, and then remove the waveform using the
removeWaveform function.

% Create the waveform.
w1 = 1:0.001:2;

% Download the waveform to the function generator.
h1 = downloadWaveform (myFGen, w1);

% Enable the output.
enableOutput(myFGen);

When you are done, remove the waveforms.

% Remove the waveform.
removeWaveform(myFGen);

8 After communicating with the instrument, close the session and remove it from the
workspace.

disconnect(myFGen);
clear myFgen;

For a list of supported functions for use with Quick-Control Function Generator, see
“Quick-Control Function Generator Functions” on page 14-45.

See Also

Related Examples
• “Generate Standard Waveforms Using the Quick-Control Function Generator” on

page 14-40
• “Quick-Control Function Generator Functions” on page 14-45
• “Quick-Control Function Generator Properties” on page 14-48

14 Using IVI Drivers

14-44

Quick-Control Function Generator Functions

The fgen function uses the following functions, in addition to standard functions such as
connect and disconnect.
Function Description
selectChannel Specifies the channel name from which the function

generator produces the waveform.

Example:

 selectChannel(myFGen, '1');
drivers Returns a list of available function generator instrument

drivers.

Example:

driverlist = drivers(myFGen);

See the note following this table about using a SCPI-based
driver for Agilent function generators.

resources Retrieves a list of available instrument resources. It returns
a list of available VISA resource strings when using an IVI-
C function generator.

Example:

res = resources(myFGen);
selectWaveform Specifies which arbitrary waveform the function generator

produces.

Example:

selectWaveform (myFGen, wh);

where wh is the waveform handle you are selecting.

 Quick-Control Function Generator Functions

14-45

Function Description
downloadWaveform Downloads an arbitrary waveform to the function generator.

If you provide an output variable, a waveform handle is
returned. It can be used in the selectWaveform and
removeWaveform functions.

If you don't provide an output variable, function generator
overwrites the waveform when a new waveform is
downloaded and deletes it upon disconnection.

Example:

 % Download the following waveform to fgen
 w = 1:0.001:2;
 downloadWaveform (myFGen, w);

 % Download a waveform to fgen and return
 a waveform handle
 wh = downloadWaveform (myFGen, w);

removeWaveform Removes a previously created arbitrary waveform from the
function generator's memory. If a waveform handle is
provided, it removes the waveform represented by the
waveform handle.

Example:

 % Remove a waveform from fgen with waveform
 handle 10000
 removeWaveform (myFGen, 10000);

enableOutput Enables the function generator to produce a signal that
appears at the output connector. This function produces a
waveform defined by the Waveform property. If the
Waveform property is set to 'Arb', the function uses the
latest internal waveform handle to output the waveform.

enableOutput (myFGen);
disableOutput Disables the signal that appears at the output connector.

Disables the selected channel.

disableOutput (myFGen);

14 Using IVI Drivers

14-46

Function Description
reset Sets the function generator to factory default state.

Using a SCPI-based Driver for Agilent Function Generators

If you are using a SCPI-based Agilent function generator such as the 33220A, you will
see the following when you use the drivers function on an fgen object myFGen.

driverlist = drivers(myFGen);

driverlist =

Driver: Agilent332x0_SCPI
Supported Models:
 33210A, 33220A, 33250A

The _SCPI after the instrument name indicates this is using a SCPI driver instead of the
IVI driver.

Using Properties

For a list of supported properties for use with Quick-Control Function Generator, see
Quick-Control Function Generator Properties.

 Quick-Control Function Generator Functions

14-47

Quick-Control Function Generator Properties

The fgen function can use the following properties.
Property Description
AMDepth Specifies the extent of Amplitude modulation the function

generator applies to the carrier signal. The units are a
percentage of full modulation. At 0% depth, the output
amplitude equals the carrier signal's amplitude. At 100%
depth, the output amplitude equals twice the carrier signal's
amplitude. This property affects function generator behavior
only when the Mode is set to 'AM' and
ModulationResource is set to 'internal'.

Amplitude Specifies the amplitude of the standard waveform. The
value is the amplitude at the output terminal. The units are
volts peak-to-peak (Vpp). For example, to produce a
waveform ranging from -5.0 to +5.0 volts, set this value to
10.0 volts. Does not apply if Waveform is of type 'Arb'.

ArbWaveformGain Specifies the factor by which the function generator scales
the arbitrary waveform data. Use this property to scale the
arbitrary waveform to ranges other than -1.0 to +1.0. When
set to 2.0, the output signal ranges from -2.0 to +2.0 volts.
Only applies if Waveform is of type 'Arb'.

BurstCount Specifies the number of waveform cycles that the function
generator produces after it receives a trigger. Only applies if
Mode is set to 'burst'.

ChannelNames This read-only property provides available channel names in
a cell array.

Driver This property is optional. Use only if necessary to specify the
underlying driver used to communicate with an instrument.
If the DriverDetectionMode property is set to 'manual',
use the Driver property to specify the instrument driver.

14 Using IVI Drivers

14-48

Property Description
DriverDetectionMode Sets up criteria for connection. Valid values are 'auto' and

'manual'. The default value is 'auto', which means you
do not need to set a driver name before connecting to an
instrument. If set to 'manual', a driver name needs to be
provided using the Driver property before connecting to
instrument.

FMDeviation Specifies the maximum frequency deviation the modulating
waveform applies to the carrier waveform. This deviation
corresponds to the maximum amplitude level of the
modulating signal. The units are Hertz (Hz). This property
affects function generator behavior only when Mode is set to
'FM' and ModulationSource is set to 'internal'.

Frequency Specifies the rate at which the function generator outputs
an entire arbitrary waveform when Waveform is set to
'Arb'. It specifies the frequency of the standard waveform
when Waveform is set to standard waveform types. The
units are Hertz (Hz).

Mode Specifies run mode. Valid values are 'continuous',
'burst', 'AM', or 'FM'. Specifies how the function
generator produces waveforms. It configures the instrument
to generate output continuously or to generate a discrete
number of waveform cycles based on a trigger event. It can
also be set to AM and FM.

ModulationFrequency Specifies the frequency of the standard waveform that the
function generator uses to modulate the output signal. The
units are Hertz (Hz). This attribute affects function
generator behavior only when Mode is set to 'AM' or 'FM'
and the ModulationSource attribute is set to
'internal'.

ModulationSource Specifies the signal that the function generator uses to
modulate the output signal. Valid values are 'internal'
and 'external'. This attribute affects function generator
behavior only when Mode is set to 'AM' or 'FM'.

 Quick-Control Function Generator Properties

14-49

Property Description
ModulationWaveform Specifies the standard waveform type that the function

generator uses to modulate the output signal. This affects
function generator behavior only when Mode is set to 'AM'
or 'FM' and the ModulationSource is set to 'internal'.
Valid values are 'sine', 'square', 'triangle',
'RampUp', 'RampDown', and 'DC'.

Offset Uses the standard waveform DC offset as input arguments
if the waveform is not of type 'Arb'. Use Arb Waveform
Offset as input arguments if the waveform is of type 'Arb'.

Specifies the DC offset of the standard waveform when
Waveform is set to standard waveform. For example, a
standard waveform ranging from +5.0 volts to 0.0 volts has
a DC offset of 2.5 volts. When Waveform is set to 'Arb',
this property shifts the arbitrary waveform's range. For
example, when it is set to 1.0, the output signal ranges from
2.0 volts to 0.0 volts.

OutputImpedance Specifies the function generator's output impedance at the
output connector.

Resource Set this before connecting to the instrument. It is the VISA
resource string for your instrument.

SelectedChannel Returns the selected channel name that was set using the
selectChannel function.

StartPhase Specifies the horizontal offset in degrees of the standard
waveform the function generator produces. The units are
degrees of one waveform cycle. For example, a 180-degree
phase offset means output generation begins halfway
through the waveform.

Status This read-only property indicates the communication status
of your instrument session. It is either 'open' or
'closed'.

14 Using IVI Drivers

14-50

Property Description
TriggerRate Specifies the rate at which the function generator's internal

trigger source produces a trigger, in triggers per second.
This property affects function generator behavior only when
the TriggerSource is set to 'internal'. Only applies if
Mode is set to 'burst'.

TriggerSource Specifies the trigger source. After the function generator
receives a trigger, it generates an output signal if Mode is
set to 'burst'. Valid values are 'internal' or
'external'.

Waveform Uses the waveform type as an input argument. Valid values
are 'Arb', for an arbitrary waveform, or these standard
waveform types – 'Sine', 'Square', 'Triangle',
'RampUp', 'RampDown', and 'DC'.

 Quick-Control Function Generator Properties

14-51

Quick-Control RF Signal Generator Requirements
You can use the Quick-Control RF Signal Generator for any RF signal generator that
uses an underlying IVI-C driver. However, you do not have to directly deal with the
underlying driver.

Create the Quick-Control RF Signal Generator object using the Instrument Control
Toolbox rfsiggen function. It simplifies controlling RF signal generators and performs
waveform generations. This feature works with any instrument that has IVI-C rfsiggen
class drivers.

To use the Quick-Control RF Signal Generator for an IVI-C RF signal generator, ensure
the following software is installed. Most components are installed by the Instrument
Control Toolbox Support Package for National Instruments VISA and ICP Interfaces, but
you can also install them separately. To install the support package, see “Install the
National Instruments VISA and ICP Interfaces Support Package” on page 15-16.

• Windows 64-bit platforms
• VISA shared components (installed by the support package)
• VISA (installed by the support package)

Note, the examples use Agilent VISA, but you can use any vendor’s implementation of
VISA.

• National Instruments IVI compliance package NICP 4.1 or later (installed by the
support package)

• The device-specific driver for your instrument. If you do not already have it, go to your
instrument vendor's website and download the IVI-C driver for your specific
instrument.

You can use instrhwinfo to confirm that the required software is installed.

% Check that the software is properly installed.
instrhwinfo('ivi')

14 Using IVI Drivers

14-52

See Also

More About
• “Quick-Control RF Signal Generator Functions” on page 14-54
• “Quick-Control RF Signal Generator Properties” on page 14-56
• “Download and Generate Signals with RF Signal Generator” on page 14-59

 See Also

14-53

Quick-Control RF Signal Generator Functions
The rfsiggen function uses the following functions, in addition to standard Instrument
Control Toolbox functions such as connect and disconnect.
Function Description
drivers Return a list of available RF signal generator instrument

drivers with their supported instrument models.

Example:

driverlist = drivers(myRFSigGen);

where my myRFSigGen is the name of the rfsiggen object.
resources Retrieve a list of available instrument resources. It returns

a list of available VISA resource strings when using an IVI-
C RF signal generator.

Example:

res = resources(myRFSigGen);

where my myRFSigGen is the name of the rfsiggen object.
download Download an arbitrary waveform to the RF signal generator.

It accepts a complex vector of doubles containing the
IQData and a double defining the SampleRate of the
signal.

Example:

rf = rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR','AgRfSigGen')
 IQData = (-0.98:0.02:1) + 1i*(-0.98:0.02:1);
 SampleRate = 800000;
 download(rf, IQData, SampleRate)

14 Using IVI Drivers

14-54

Function Description
start Enable the RF signal generator signal output and

modulation output. It takes a double value for each of the
three required arguments: CenterFrequency specified in
Hz, OutputPower specified in dB, and LoopCount, which
represents the number of times the waveform should be
repeated.

Example:

rf = rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR','AgRfSigGen')
 CenterFrequency = 4000000
 OutputPower = 0
 LoopCount = inf
 start(rf, CenterFrequency, OutputPower, LoopCount)

stop Stop the RF signal generator signal output and modulation
output.

stop(rf);

where rf is the name of the rfsiggen object.
reset Set the RF signal generator to factory default state.

See Also

More About
• “Quick-Control RF Signal Generator Requirements” on page 14-52
• “Quick-Control RF Signal Generator Properties” on page 14-56
• “Download and Generate Signals with RF Signal Generator” on page 14-59

 See Also

14-55

Quick-Control RF Signal Generator Properties
The Quick-Control RF Signal Generator can use the following properties on the
rfsiggen, download, or start functions. See the examples to learn how to set the
properties.
Property Description
CenterFrequency Used on the start function, this argument is the center

frequency for the waveform, specified as a double in Hz.
Driver Used on the rfsiggen function, this argument specifies the

underlying driver used to communicate with an instrument
as a string. It is optional, and, if not specified, the driver is
auto-detected.

IQData Used on the download function, this argument specifies the
IQ data to use in the download.

LoopCount Used on the start function, this argument is the number of
times the waveform should be repeated, specified as a
double.

OutputPower Used on the start function, this argument is the output
power, specified as a double in dB.

Resource The VISA resource string for your instrument, specified as a
string. Set this before connecting to the instrument. It is
optional during object creation, and can be used if you know
the resource string for your instrument. Otherwise you can
set it after object creation.

SampleRate Used on the download function, this argument specifies the
sample rate to use in the download.

Set Driver or Resource During Object Creation

You can optionally set the Driver and Resource property values during the rfsiggen
object creation.

The Driver property specifies the underlying driver used to communicate with an
instrument, and is specified as a string. It is optional, and if not specified the driver is
auto-detected.

14 Using IVI Drivers

14-56

The Resource property specifies the VISA resource string for your instrument, and is
specified as a string. It is optional and can be used if you know the resource string for
your instrument.

This example shows how to create the RF Signal Generator object rf and specify the
resource string shown and a driver named AgRFSigGen.

rf = rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR','AgRFSigGen')

Set IQ Data and Sample Rate for Download

You can set the IQData and SampleRate property values during the download
operation.

This example shows how to create the RF Signal Generator object, assign values to the
properties, and then perform the download.

rf = rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR','AgRFSigGen')
IQData = (-0.98:0.02:1) + 1i*(-0.98:0.02:1);
SampleRate = 500000;
download(rf, IQData, SampleRate)

Set Signal Generation Properties

You can set property values that are used when you start the RF signal generator signal
output and modulation output with the start function.

This example shows how to create the RF Signal Generator object, assign values to the
properties, and then perform the signal generation.

rf = rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR','AgilentRFSigGen')
CenterFrequency = 2000000
OutputPower = 0
LoopCount = inf
start(rf, CenterFrequency, OutputPower, LoopCount)

See Also

More About
• “Quick-Control RF Signal Generator Requirements” on page 14-52

 See Also

14-57

• “Quick-Control RF Signal Generator Functions” on page 14-54
• “Download and Generate Signals with RF Signal Generator” on page 14-59

14 Using IVI Drivers

14-58

Download and Generate Signals with RF Signal Generator
In this section...
“Create an RF Signal Generator Object” on page 14-59
“Download a Waveform” on page 14-61
“Generate Signal and Modulation Output” on page 14-61

Create an RF Signal Generator Object

You create an rfsiggen object to communicate with RF signal generators. You must
specify a resource, either when you create the object or after object creation. The
Resource property is the VISA resource string for the instrument.

You can optionally specify a driver either during or after object creation using the
Driver property. If you don't specify one it is auto-detected.

Create an RF Signal Generator Object and Set Resource and Driver

You can create the rfsiggen object and set the Resource and Driver during object
creation. If those properties are valid, it automatically connects to the instrument.

This syntax shows how to create the RF Signal Generator object and connect using the
specified resource string and driver.

rf = rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR','AgRfSigGen')

Create an RF Signal Generator Object without Setting Resource and Driver

You can create the rfsiggen object without setting the Resource or Driver, and then set
it after object creation.

1 Create the RF Signal Generator object with no arguments.

rf = rfsiggen;
2 Find available resources using the resources function.

ResourceList = resources(rf)

ResourceList =

 Download and Generate Signals with RF Signal Generator

14-59

 3x1 cell array

 {'ASRL::COM1'}
 {'ASRL::COM3'}
 'TCPIP0::172.28.22.99::inst0::INSTR'

In this case, it finds two COM ports that could host an instrument, and the VISA
resource string of an RF signal generator.

3 Set the RF Signal Generator resource using the Resource property, which is the
VISA resource string.

rf.Resource = 'TCPIP0::172.28.22.99::inst0::INSTR';
4 List the drivers using the drivers function.

drivers(rf)

ans =

 Driver: AgRfSigGen_SCPI
 Supported Models:
 E4428C, E4438C

 Driver: RsRfSigGen_SCPI
 Supported Models:
 SMW200A, SMBV100A, SMU200A, SMJ100A, AMU200A, SMATE200A

 Driver: AgRfSigGen
 Supported Models:
 E4428C,E4438C,N5181A,N5182A,N5183A,N5171B,N5181B,N5172B
 N5182B,N5173B,N5183B,E8241A,E8244A,E8251A,E8254A,E8247C

In this case, it finds the drivers for a Keysight (formerly Agilent) SCPI-based RF
signal generator, a Rohde & Shwartz SCPI-based generator, and another Keysight
generator. You can see that it lists the supported models of the driver in each case.

5 Set the RF Signal Generator driver using the Driver property.

rf.Driver = 'AgRfSigGen';
6 You can now connect to the instrument.

connect(rf);

14 Using IVI Drivers

14-60

Download a Waveform

You can download an arbitrary waveform to an RF signal generator using the download
function and assign the IQData and SampleRate to use. The IQData is a complex vector
of doubles containing the IQ data to use.

This example shows how to download a waveform to your rfsiggen object and assign
the IQData and SampleRate to use.

1 Create an rfsiggen object to communicate with an RF signal generator, using the
VISA resource string and driver associated with your own instrument.

rf = rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR','AgRfSigGen')

When you designate the Resource and Driver properties during object creation, it
automatically connects to the instrument.

2 Assign the IQData and SampleRate variables to use in the download.

IQData = (-0.98:0.02:1) + 1i*(-0.98:0.02:1);
SampleRate = 800000;

3 Perform the download.

download(rf, IQData, SampleRate)

Generate Signal and Modulation Output

You can use the start function on an RF signal generator object to start signal output
and modulation output. It takes a double value for each of the three required arguments:
CenterFrequency specified in Hz, OutputPower specified in dB, and LoopCount,
which represents the number of times the waveform should be repeated.

This example shows how to enable signal output and modulation output for the RF signal
generator, and assign the required arguments.

1 Create an rfsiggen object to communicate with an RF signal generator, using the
VISA resource string and driver associated with your own instrument.

rf = rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR','AgRfSigGen')

When you designate the Resource and Driver properties during object creation, it
automatically connects to the instrument.

 Download and Generate Signals with RF Signal Generator

14-61

2 Assign the CenterFrequency, OutputPower, and LoopCount variables to use in
the signal generation.

CenterFrequency = 4000000
OutputPower = 0
LoopCount = inf

3 Start the signal generation.

start(rf, CenterFrequency, OutputPower, LoopCount)

See Also

More About
• “Quick-Control RF Signal Generator Requirements” on page 14-52
• “Quick-Control RF Signal Generator Functions” on page 14-54
• “Quick-Control RF Signal Generator Properties” on page 14-56

14 Using IVI Drivers

14-62

Creating Shared Libraries or Standalone Applications When
Using IVI-C or VXI

When using IVI-C or VXI Plug&Play drivers, executing your code will generate
additional files in the folder specified by executing the following code at the MATLAB
prompt:

fullfile(tempdir,'ICTDeploymentFiles',sprintf('R%s',version('-release')))

On all supported platforms, a file with the name
MATLABPrototypeFor<driverName>.m is generated, where <driverName> the name
of the IVI-C or VXI Plug&Play driver. With 64-bit MATLAB on Windows, a second file by
the name <driverName>_thunk_pcwin64.dll is generated. When creating your
deployed application or shared library, manually include these generated files. For more
information on including additional files refer to the MATLAB Compiler documentation.

 Creating Shared Libraries or Standalone Applications When Using IVI-C or VXI

14-63

Instrument Support Packages

• “Instrument Control Toolbox Supported Hardware” on page 15-2
• “Install the Ocean Optics Spectrometers Support Package” on page 15-4
• “Install the NI-SCOPE Oscilloscopes Support Package” on page 15-6
• “Install the NI-FGEN Function Generators Support Package” on page 15-7
• “Install the NI-DCPower Power Supplies Support Package” on page 15-8
• “Install the NI-DMM Digital Multimeters Support Package” on page 15-10
• “Install the NI-845x I2C/SPI Interface Support Package” on page 15-12
• “Install the Total Phase Aardvark I2C/SPI Interface Support Package” on page 15-14
• “Install the NI-Switch Hardware Support Package” on page 15-15
• “Install the National Instruments VISA and ICP Interfaces Support Package”

on page 15-16
• “Install the Keysight IO Libraries and VISA Interface Support Package”

on page 15-18

15

Instrument Control Toolbox Supported Hardware

As of this release, Instrument Control Toolbox supports the following hardware in
support packages. For a complete list of supported interfaces and platforms that do not
require support packages, see “Supported Hardware” on page 1-12.

Support Package Vendor Earliest Release
Available

Last Release Available

Ocean Optics Spectrometers
on page 15-4

Ocean Optics R2013b Current

National Instruments NI-
SCOPE Oscilloscopes on page
15-6

National Instruments R2013b Current

National Instruments NI-
FGEN Function Generators
on page 15-7

National Instruments R2013b Current

National Instruments NI-
DCPower Power Supplies on
page 15-8

National Instruments R2014a Current

National Instruments NI-
DMM Digital Multimeters on
page 15-10

National Instruments R2014a Current

National Instruments
NI-845x I2C/SPI Interface on
page 15-12

National Instruments R2014b Current

Total Phase Aardvark
I2C/SPI Interface on page 15-
14

Total Phase R2014b Current

National Instruments NI-
Switch Hardware on page 15-
15

National Instruments R2014b Current

15 Instrument Support Packages

15-2

matlab: matlab.addons.supportpackage.internal.explorer.showSupportPackagesForBaseProducts('IC', 'tripwire');

Support Package Vendor Earliest Release
Available

Last Release Available

National Instruments VISA
and ICP Interfaces on page
15-16

Documentation:
http://www.mathworks.com/
help/supportpkg/
nivisaandicp/index.html

National Instruments R2015a Current

Keysight IO Libraries and
VISA Interface on page 15-
18

Keysight R2015b Current

For a complete list of supported hardware, see Hardware Support.

For a list of Instrument Control Toolbox supported interfaces and platforms, see
“Supported Hardware” on page 1-12.

 Instrument Control Toolbox Supported Hardware

15-3

http://www.mathworks.com/help/supportpkg/nivisaandicp/index.html
http://www.mathworks.com/help/supportpkg/nivisaandicp/index.html
http://www.mathworks.com/help/supportpkg/nivisaandicp/index.html
http://www.mathworks.com/hardware-support/instrument-control-software.html

Install the Ocean Optics Spectrometers Support Package
You can use Instrument Control Toolbox to communicate with Ocean Optics USB
spectrometers. You can acquire data from the spectrometer and control it. Ocean Optics
manufactures a broad line of USB-powered spectrometers covering the visible, near IR,
and UV portions of the spectrum. You can use these spectrometers from MATLAB on
Windows and Macintosh platforms.

The Instrument Control Toolbox Support Package for Ocean Optics Spectrometers lets
you use MATLAB for comprehensive control of any spectrometer that is supported by the
Ocean Optics OmniDriver software (version 2.12 or higher). You can perform many
tasks, including:

• Acquire a spectrum
• Set the integration time
• Enable dark current and nonlinear spectral corrections
• View all connected devices

For a list of supported devices, see http://www.mathworks.com/hardware-support/ocean-
optics-spectrometers.html.

This feature is available through the Hardware Support Packages. Using this
installation process, download and install the following file(s) on your host computer:

• MATLAB Instrument Driver for Ocean Optics support
• Ocean Optics OmniDriver version 2.2 driver files
• An example that shows how to take measurements with an Ocean Optics

spectrometer

Note You can use this support package on a host computer running on 64-bit Windows or
64-bit macOS operating systems that Instrument Control Toolbox supports.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for Ocean Optics
Spectrometers:

15 Instrument Support Packages

15-4

http://www.mathworks.com/hardware-support/ocean-optics-spectrometers.html
http://www.mathworks.com/hardware-support/ocean-optics-spectrometers.html

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

 Install the Ocean Optics Spectrometers Support Package

15-5

Install the NI-SCOPE Oscilloscopes Support Package
You can use Instrument Control Toolbox to communicate with NI-SCOPE oscilloscopes.
You can acquire waveform data from the oscilloscope and control it.

This feature is available through the Instrument Control Toolbox Support Package for
NI-SCOPE Oscilloscopes. Using this installation process, you download and install the
following file(s) on your host computer:

• MATLAB Instrument Driver for NI-SCOPE support
• National Instruments driver file: NI-SCOPE driver version 3.9.7

Note You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for NI-SCOPE Oscilloscopes:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

15 Instrument Support Packages

15-6

Install the NI-FGEN Function Generators Support Package
You can use the Instrument Control Toolbox to communicate with NI-FGEN function
generators. You can control and configure the function generator, and perform tasks such
as generating sine waves.

This feature is available through the Instrument Control Toolbox Support Package for
NI-FGEN Function Generators. Using this installation process, you download and install
the following file(s) on your host computer:

• MATLAB Instrument Driver for NI-FGEN support
• National Instruments driver file: NI-FGEN driver version 2.9.1

Note You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for NI-FGEN Function
Generators:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

 Install the NI-FGEN Function Generators Support Package

15-7

Install the NI-DCPower Power Supplies Support Package
You can use Instrument Control Toolbox to communicate with NI-DCPower power
supplies. You can control and take digital measurements from a power supply, such as
the NI PXI 4011 triple-output programmable DC power supply.

This feature is available through the Instrument Control Toolbox Support Package for
NI-DCPower Power Supplies. Using this installation process, you download and install
the following file(s) on your host computer:

• MATLAB Instrument Driver for NI-DCPower support
• National Instruments NI-DCPower driver file
• Example that shows how to take digital measurements from an NI-DCPower power

supply

Note You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for NI-DCPower Power
Supplies:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

15 Instrument Support Packages

15-8

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

 Install the NI-DCPower Power Supplies Support Package

15-9

Install the NI-DMM Digital Multimeters Support Package
You can use Instrument Control Toolbox to communicate with NI-DMM digital
multimeters. You can control and take measurements from a digital multimeter, such as
measuring voltage or resistance.

This feature is available through the Instrument Control Toolbox Support Package for
NI-DMM Digital Multimeters. Using this installation process, you download and install
the following file(s) on your host computer:

• MATLAB Instrument Driver for NI-DMM support
• National Instruments NI-DMM driver file
• Example that shows how to take digital measurements from a NI-DMM digital

multimeter

Note You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for NI-DMM Digital
Multimeters:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

15 Instrument Support Packages

15-10

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

 Install the NI-DMM Digital Multimeters Support Package

15-11

Install the NI-845x I2C/SPI Interface Support Package
For the Instrument Control Toolbox I2C and SPI interfaces, you can use either a Total
Phase Aardvark host adaptor or an NI-845x adaptor. To use the I2C or SPI interface
with the NI-845x adaptor, you must download this Hardware Support Package to obtain
the latest driver, if you do not already have the driver installed. If you already have the
latest driver installed, you do not need to download this Support Package.

To use the NI-845x driver, download and install the Instrument Control Toolbox Support
Package for NI-845x I2C/SPI Interface, which includes the following files on your host
computer:

• National Instruments NI-845x adaptor driver file
• Example that shows how to use the NI-854x adaptor with the I2C interface

Note You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for NI-845x I2C/SPI
Interface:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

15 Instrument Support Packages

15-12

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

 Install the NI-845x I2C/SPI Interface Support Package

15-13

Install the Total Phase Aardvark I2C/SPI Interface Support
Package

For the Instrument Control Toolbox I2C and SPI interfaces, you can use either a Total
Phase Aardvark host adaptor or an NI-845x adaptor. To use the I2C or SPI interface
with the Aardvark adaptor, you must download this Hardware Support Package to
obtain the necessary files. You must also download the USB device driver from the
vendor.

The Instrument Control Toolbox Support Package for Total Phase Aardvark I2C/SPI
Interface downloads and installs the Total Phase Aardvark host adaptor driver file on
your host computer. Examples of using the Aardvark adaptor with the I2C interface can
be found in the Instrument Control Toolbox documentation. For more information on
using Aardvark with the I2C and SPI interfaces, see “I2C Interface Overview” on page 9-
2 and “SPI Interface Overview” on page 10-2.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for Total Phase Aardvark
I2C/SPI Interface:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

15 Instrument Support Packages

15-14

Install the NI-Switch Hardware Support Package
You can use Instrument Control Toolbox to communicate with NI-Switch instruments.
For example, you can control a relay box such as the NI PXI-2586 10-channel relay
switch.

This feature is available through the Instrument Control Toolbox Support Package for
NI-Switch Hardware. Using this installation process, you download and install the
following file(s) on your host computer

• MATLAB Instrument Driver for NI-Switch support
• National Instruments NI-Switch driver file
• Example that shows how to control an NI-Switch relay switch

Note You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for NI-Switch Hardware:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

 Install the NI-Switch Hardware Support Package

15-15

Install the National Instruments VISA and ICP Interfaces Support
Package

The Instrument Control Toolbox Support Package for National Instruments VISA and
ICP Interfaces lets you use the Quick Control Oscilloscope and Quick Control Function
Generator interfaces.

After you download and install the support package, you can use the Quick Control
interfaces to communicate with oscilloscopes and function generators.

The support package installs the following files on your host computer:

• MATLAB Instrument Driver for Quick Control Oscilloscope and Quick Control
Function Generator

• VISA shared components
• VISA
• National Instruments IVI compliance package NICP 4.1 or later
• The Instrument Control Toolbox Support Package for National Instruments VISA and

ICP Interfaces documentation

Note You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for National Instruments
VISA and ICP Interfaces:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

15 Instrument Support Packages

15-16

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

 Install the National Instruments VISA and ICP Interfaces Support Package

15-17

Install the Keysight IO Libraries and VISA Interface Support
Package

The Instrument Control Toolbox Support Package for Keysight IO Libraries and VISA
Interface simplifies the use of Keysight (formerly Agilent) VISA by installing the
necessary software components, such as the IO libraries and VISA shared components.

After you download and install the support package, you can use the VISA interface to
communicate with Keysight instruments.

The support package installs the following files on your host computer:

• MATLAB Instrument Driver for Keysight VISA
• Keysight IO libraries
• Keysight VISA shared components

Installing the Support Package

To install the Instrument Control Toolbox Support Package for Keysight IO Libraries
and VISA Interface:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

15 Instrument Support Packages

15-18

Using Generic Instrument Drivers

This chapter describes the use of generic drivers for controlling instruments from the
MATLAB Command window, using the Instrument Control Toolbox software.

• “Generic Drivers: Overview” on page 16-2
• “Writing a Generic Driver” on page 16-3
• “Using Generic Driver with Test & Measurement Tool” on page 16-8
• “Using a Generic Driver at Command Line” on page 16-11

16

Generic Drivers: Overview
Generic drivers allow the Instrument Control Toolbox software to communicate with
devices or software that do not use industry-standard drivers or protocols.

Typical cases, but not the only possibilities, are instruments that offer access through a
COM interface (where the instrument can be accessed as an ActiveX® object from the
MATLAB workspace), that use proprietary libraries, or that use custom MEX-files.

Because the generic nature of this feature does not lend itself to detailed discussion of
specific instructions that work in all cases, the following sections of this chapter use an
example to illustrate how to create and use a MATLAB generic instrument driver:

• “Writing a Generic Driver” on page 16-3
• “Using Generic Driver with Test & Measurement Tool” on page 16-8
• “Using a Generic Driver at Command Line” on page 16-11

16 Using Generic Instrument Drivers

16-2

Writing a Generic Driver
In this section...
“Creating the Driver and Defining Its Initialization Behavior” on page 16-3
“Defining Properties” on page 16-4
“Defining Functions” on page 16-7

Creating the Driver and Defining Its Initialization Behavior
In this example, the generic “instrument” that you control is Microsoft Internet
Explorer® (IE), which is represented by a COM object. (This example works only on
Windows systems.) Working through the example, you write a simple MATLAB
instrument generic driver that allows the Instrument Control Toolbox software to
communicate with a COM object. Using both a graphical interface and command-line
code, with your driver you create an IE browser window, control its size, and specify
what Web page it displays. The principles demonstrated in this example can be applied
when writing a generic driver for any kind of instrument.

In this section, you create a new driver and specify what happens when an object is
created for this driver.

1 Open the MATLAB Instrument Driver Editor from the MATLAB Command Window.
midedit

2 To make it known that this driver is a generic driver, in the MATLAB Instrument
Driver Editor, select File > New > Generic driver, as shown.

3 Select File > Save as.

Navigate to the directory where you want to save your driver, and give it any name
you want. This example uses the name ie_drv. Remember where you have saved
your driver.

4 Select the Summary node in the driver editor window. Set the fields of this pane with
any values you want. This example uses the following settings:

 Writing a Generic Driver

16-3

Manufacturer Microsoft
Supported models IE
Instrument type Browser
Driver version 1.0

5 Select the node Initialization and Cleanup.
6 Click the Create tab.

This is where you define the code to execute when this driver is used to create a
device object. This example identifies the COM object for Internet Explorer, and
assigns the handle to that object as the Interface property of the device object
being created.

7 Add the following lines of code to the Create tab:
ie = actxserver('internetexplorer.application');
obj.Interface = ie);

8 Click the Connect tab.

This is where you define the code to execute when you connect your device object to
your instrument or software.

9 Add the following lines of code to the Connect tab:
ie = get(obj, 'Interface');
ie.Visible = 1);
ie.FullScreen = 0);

The first line gets ie as a handle to the COM object, based on the assignment in the
Create code. The two lines after that set the window visibility and size.

Defining Properties
Writing properties for generic drivers in the MATLAB Instrument Driver Editor is a
matter of writing straight code.

In this example, you define two properties. The first property uses the same name as the
corresponding property of the COM object; the second property uses a different name
from its corresponding COM object property.

Using the Same Name for a Property

The position of the IE browser window is determined by the Top and Left properties of
its COM object. In the following steps, you make the Top property available to your

16 Using Generic Instrument Drivers

16-4

device object through your generic driver. For this property, the name of the property is
the same in both the COM object and in your device object.

1 Select the Properties node in the driver editor tree.
2 In the Add property field, enter the text Top, and click Add.
3 Expand the Properties node in the tree, and select the new node Top.
4 Click the Property Values tab. Your property can have a numeric value

corresponding to screen pixels. For this example, you can limit the value of the
property from 0 to 200.

5 Make sure the Data Type field indicates Double. In the Constraint field, click the
pull-down menu and select Bounded.

6 Keep the Minimum value of 0.0, and enter a Maximum value of 200.

Your driver editor window should look like the following figure.

Now that you have defined the data type and acceptable values of the property, you
can write the code to be executed whenever the device object property is accessed by
get or set.

7 Click the Code tab.

The concept of reading the property is rather straightforward. When you get the Top
property of the device object, the driver merely gets the value of the COM object's

 Writing a Generic Driver

16-5

corresponding Top property. So all you need in the Get code function is to identify
the COM object to get the information from.

8 Add the following code at the bottom of the function in the Get code pane:

ie = obj.Interface;
propertyValue = get(ie, propertyName);

The first line gets ie as a handle to the COM object. Remember that the Interface
property of the device object is set to this value back in the driver's Create code. The
second line retrieves the value of the COM object's Top property, and assigns it to
propertyValue, which is returned to the get function for the device object.

9 Add the following code at the bottom of the function in the Set code pane:

ie = get(obj, 'Interface');
ie.propertyName = propertyValue;

Using a Different Name for a Property

In the preceding steps, you created in your driver a device object property that has the
same name as the property of the COM object representing your instrument. You can
also create properties with names that do not match those of the COM object properties.
In the following steps, you create a property called Vsize that corresponds to the IE
COM object property Height.

1 Select the Properties node in the driver editor tree.
2 In the Add property field, enter the text Vsize, and click Add.
3 Expand the Properties node in the tree, and select the new node Vsize.
4 Click the Property Values tab. This property can have a numeric value

corresponding to screen pixels, whose range you define as 200 to 800.
5 Make sure the Data Type field indicates Double. In the Constraint field, click the

pull-down menu and select Bounded.
6 Enter a Minimum value of 200, and enter a Maximum value of 800.
7 Click the Code tab.
8 Add the following code at the bottom of the function in the Get code pane:

ie = obj.Interface;
propertyValue = ie.Height;

9 Add the following code at the bottom of the function in the Set code pane:

ie = get(obj, 'Interface');
set(ie, 'Height', propertyValue);

16 Using Generic Instrument Drivers

16-6

10 Save your driver.

Defining Functions

A common function for Internet Explorer is to download a Web page. In the following
steps, you create a function called goTo that allows you to navigate the Web with the
browser.

1 Select the Functions node in the driver editor tree.
2 In the Add function field, enter the text goTo, and click Add.
3 Expand the Functions node in the tree, and select the new node goTo.

Writing functions for generic drivers in the MATLAB Instrument Driver Editor is a
matter of writing straight code.

Your goTo function requires only one input argument: the URL of the Web page to
navigate to. You can call that argument site.

4 Change the first line of the MATLAB code pane to read

function goTo(obj, site)

The variable obj is the device object using this driver. The value of site is a
character vector passed into this function when you are using this driver. Your
function then must pass the value of site on to the IE COM object. So your function
must get a handle to the COM object, then call the IE COM method Navigate2,
passing to it the value of site.

5 Add the following code at the bottom of the function in the MATLAB code pane:

ie = obj.Interface;
invoke(ie, 'Navigate2', site);

6 Save your driver, and close the MATLAB Instrument Driver Editor.

Now that your generic driver is ready, you can use it with the Test & Measurement
Tool (tmtool) or at the MATLAB command line.

 Writing a Generic Driver

16-7

Using Generic Driver with Test & Measurement Tool
In this section...
“Creating and Connecting the Device Object” on page 16-8
“Accessing Properties” on page 16-9
“Using Functions” on page 16-10

Creating and Connecting the Device Object

With the Test & Measurement Tool you can scan for your driver, create a device object
that uses that driver, set and get properties of the object, and execute functions.

This example illustrates how to use the generic driver you created in “Writing a Generic
Driver” on page 16-3.

1 If your driver is not in the matlabroot\toolbox\instrument\instrument
\drivers directory, in the MATLAB Command Window, make sure that the
directory containing your driver is on the MATLAB path.

path

If you do not see the directory in the path listing, and the driver is not in the
matlabroot\toolbox\instrument\instrument\drivers directory, add the
directory to the path with the command

addpath directory

where directory is the pathname to the directory containing your driver.
2 Open the Test & Measurement Tool.

tmtool

3 In the Test & Measurement Tool tree, expand the Instrument Drivers node.
4 Select the MATLAB Instrument Drivers node.
5 Your driver might not be listed yet, so click Scan in the lower-right corner of the

tool. If the tool found your driver, it is listed in the tree as ie_drv.mdd.
6 Select the ie_drv.mdd node in the tree.
7 Right-click the ie_drv.mdd node in the tree, and select Create Device Object

Using Driver. The following dialog box appears.

16 Using Generic Instrument Drivers

16-8

8 Select the Select the created device object in the tree on dialog close check
box. The device object in this example does not need a resource, so keep that field
empty.

9 Click OK.

When the Test & Measurement Tool creates the device object, an entry for the object
appears as a node in the tree. The Browser-ie_drv node should already be selected
in the tree. This refers to the device object you just created.

10 Click Connect in the upper-right corner of the Test & Measurement Tool. This
establishes a communication channel between the tool and the IE browser window,
and an empty IE window appears on your screen. Remember that the Create code
for your driver creates an object for the IE browser, and the Connect code and
makes its window visible.

Accessing Properties

The driver you created allows you to specify where the browser window appears on your
screen and how large it is.

1 Click the Properties tab, and then select Top in the Device object properties list.

The first value displayed for setting this property is 0.0.
2 Click Set. The IE browser window shifts upward to the top edge of your screen.
3 With the mouse, grab the IE window, and drag it down some distance from the top of

the screen.
4 Now return to the Test & Measurement Tool window, and click Get for the Top

property. Notice in the Response pane how many pixels down you have moved the
window.

Use your driver Vsize property to change the size of the browser window.

 Using Generic Driver with Test & Measurement Tool

16-9

1 Select Vsize in the Device object properties list.
2 Enter a property value of 200, and click Set. Notice the IE window size.
3 Enter a property value of 400 and click Set. Notice the IE window size.
4 Try resizing the IE browser window directly with the mouse. Then in the Test &

Measurement Tool, click Get for the Vsize property. Notice the value returned to
the Response pane.

Using Functions

Use the goTo function of your generic driver to control the Web page that the browser
displays.

1 In the Test & Measurement Tool, click the Functions tab for your device object.
2 Select goTo in the list of Device object functions.
3 In the Input argument(s) field, enter 'www.mathworks.com'. Be sure to include

the single quotes.
4 Click Execute. Observe the IE browser and see that it displays the MathWorks Web

site.
5 Experiment freely. When you are finished, right-click the Browser-ie_drv node in

the tree and select Delete Object. Close the Test & Measurement Tool, and close
the IE browser window you created in this example.

16 Using Generic Instrument Drivers

16-10

Using a Generic Driver at Command Line

In this section...
“Creating and Connecting the Device Object” on page 16-11
“Accessing Properties” on page 16-12
“Using Functions” on page 16-13

Creating and Connecting the Device Object

The Instrument Control Toolbox software provides MATLAB commands you can use in
the Command Window or in files to create a device object that uses a driver, set and get
properties of the object, and execute functions.

This example illustrates how to use the generic driver you created in “Writing a Generic
Driver” on page 16-3.

1 If your driver is not in the matlabroot\toolbox\instrument\instrument
\drivers directory, in the MATLAB Command Window, make sure that the
directory containing your driver is on the MATLAB software path.

path

If you do not see the directory in the path listing, and the driver is not in the
matlabroot\toolbox\instrument\instrument\drivers directory, add the
directory to the path with the command

addpath directory

where directory is the pathname to the directory containing your driver.
2 Create a device object using your driver. For the driver used in this example, the

icdevice function does not require an argument for a resource when using a
generic driver. What the object connects to and how it makes that connection are
defined in the Create code of your driver.

ie_obj = icdevice('ie_drv');
3 Connect the object.

connect(ie_obj);

 Using a Generic Driver at Command Line

16-11

When the device object is connected, an empty IE window appears on your screen.
Now you can communicate directly with the IE browser from the MATLAB
Command window.

Accessing Properties

The driver you created allows you to specify where the browser window appears on your
screen and how large it is. You read and write the properties of your device object with
the get and set functions, respectively.

1 View all of the properties of your device object.

get(ie_obj)
 ConfirmationFcn =
 DriverName = ie_drv.mdd
 DriverType = MATLAB generic
 InstrumentModel =
 Interface = [1x1 COM.internetexplorer_application]
 LogicalName =
 Name = Browser-ie_drv
 ObjectVisibility = on
 RsrcName =
 Status = open
 Tag =
 Timeout = 10
 Type = Browser
 UserData = []

 BROWSER specific properties:
 Top = 47
 Vsize = 593

2 Most of the properties listed belong to all device objects. For this example, the
properties of interest are those listed as BROWSER specific properties, that is,
Top and Vsize.

The Top property defines the IE browser window position in pixels from the top of
the screen. Vsize defines the vertical size of the window in pixels.

3 Shift the IE browser window to the top of the screen.

ie_obj.Top = 0;
4 With the mouse, grab and drag the IE browser window down away from the top of

the screen.

16 Using Generic Instrument Drivers

16-12

5 Find the window's new position by examining the Top property.

ie_obj.Top
ans =
 120

Adjust the size of the window by setting the Vsize property.

ie_obj.Vsize = 200);
6 Make the window larger by increasing the property value.

ie_obj.Vsize = 600);

Using Functions

By using the goTo function of your generic driver, you can control the Web page
displayed in the IE browser window.

1 View all of the functions (methods) of your device object.
methods(ie_obj)

Methods for class icdevice:

Contents disp icdevice instrnotify methods size
class display igetfield instrument ne subsasgn
close end inspect invoke obj2mfile subsref
connect eq instrcallback isa open vertcat
ctranspose fieldnames instrfind isequal openvar
delete get instrfindall isetfield propinfo
devicereset geterror instrhelp isvalid selftest
disconnect horzcat instrhwinfo length set

Driver specific methods for class icdevice:

goTo

Most of the methods listed apply to all device objects. For this example, the method
of interest is the one listed under Driver specific methods, that is, goTo.

2 Use the goTo function to specify the page for the IE browser to display.

invoke(ie_obj, 'goTo', 'www.mathworks.com');

If you have access to the Internet, the IE window should display the MathWorks
Web site.

 Using a Generic Driver at Command Line

16-13

3 When you are finished with your example, clean up the MATLAB workspace by
removing the object.

disconnect(ie_obj);
delete(ie_obj);
clear ie_obj;

4 Close the IE browser window you created in this example.

16 Using Generic Instrument Drivers

16-14

Saving and Loading the Session

This chapter describes how to save and load information associated with an instrument
control session.

• “Saving and Loading Instrument Objects” on page 17-2
• “Debugging: Recording Information to Disk” on page 17-5

17

Saving and Loading Instrument Objects
In this section...
“Saving Instrument Objects to a File” on page 17-2
“Saving Objects to a MAT-File” on page 17-3

Saving Instrument Objects to a File

You can save an instrument object to a file using the obj2mfile function. obj2mfile
provides you with these options:

• Save all property values or save only those property values that differ from their
default values.

Read-only property values are not saved. Therefore, read-only properties use their
default values when you load the instrument object into the MATLAB workspace. To
determine if a property is read-only, use the propinfo function or examine the
property reference pages.

• Save property values using the set syntax or the dot notation.

If the UserData property is not empty, or if a callback property is set to a cell array of
values or a function handle, then the data stored in these properties is written to a MAT-
file when the instrument object is saved. The MAT-file has the same name as the file
containing the instrument object code.

For example, suppose you create the GPIB object g, return instrument identification
information to the variable out, and store out in the UserData property.

g = gpib('ni',0,1);
g.Tag = 'My GPIB object';
fopen(g)
cmd = '*IDN?';
fprintf(g,cmd)
out = fscanf(g);
g.UserData = out;

The following command saves g and the modified property values to the file mygpib.m.
Because the UserData property is not empty, its value is automatically written to the
MAT-file mygpib.mat.

17 Saving and Loading the Session

17-2

obj2mfile(g,'mygpib.m');

Use the type command to display mygpib.m at the command line.

Loading the Instrument Object

To load an instrument object that was saved as a file into the MATLAB workspace, type
the name of the file at the command line. For example, to load g from the file mygpib.m,

g = mygpib

The display summary for g is shown below. Note that the read-only properties such as
Status, BytesAvailable, ValuesReceived, and ValuesSent are restored to their
default values.

GPIB Object Using NI Adaptor : GPIB0-1

Communication Address
 BoardIndex: 0
 PrimaryAddress: 1
 SecondaryAddress: 0

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

When loading g into the workspace, the MAT-file mygpib.mat is automatically loaded
and the UserData property value is restored.

g.UserData
ans =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Saving Objects to a MAT-File

You can save an instrument object to a MAT-file just as you would any workspace
variable — using the save command. For example, to save the GPIB object g and the

 Saving and Loading Instrument Objects

17-3

variables cmd and out, defined in “Saving Instrument Objects to a File” on page 17-2, to
the MAT-file mygpib1.mat,

save mygpib1 g cmd out

Read-only property values are not saved. Therefore, read-only properties use their
default values when you load the instrument object into the MATLAB workspace. To
determine if a property is read-only, use the propinfo function or examine the property
reference pages.

Loading the Instrument Object

To load an instrument object that was saved to a MAT-file into the MATLAB workspace,
use the load command. For example, to load g, cmd, and out from MAT-file
mygpib1.mat,

load mygpib1

The display summary for g is shown below. Note that the read-only properties such as
Status, BytesAvailable, ValuesReceived, and ValuesSent are restored to their
default values.

GPIB Object Using NI Adaptor : GPIB0-1

Communication Address
 BoardIndex: 0
 PrimaryAddress: 1
 SecondaryAddress: 0

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

17 Saving and Loading the Session

17-4

Debugging: Recording Information to Disk

In this section...
“Using the record Function” on page 17-5
“Introduction to Recording Information” on page 17-6
“Creating Multiple Record Files” on page 17-6
“Specifying a File Name” on page 17-6
“Record File Format” on page 17-7
“Recording Information to Disk” on page 17-9

Using the record Function

Recording information to disk provides a permanent record of your instrument control
session, and is an easy way to debug your application. While the instrument object is
connected to the instrument, you can record this information to a disk file:

• The number of values written to the instrument, the number of values read from the
instrument, and the data type of the values

• Data written to the instrument, and data read from the instrument
• Event information

You record information to a disk file with the record function. The properties associated
with recording information to disk are given below.
Recording Properties

Property Name Description
RecordDetail Specify the amount of information saved to a record file.
RecordMode Specify whether data and event information are saved to

one record file or to multiple record files.
RecordName Specify the name of the record file.
RecordStatus Indicate if data and event information are saved to a

record file.

 Debugging: Recording Information to Disk

17-5

Introduction to Recording Information

This example creates the GPIB object g, records the number of values transferred
between g and the instrument, and stores the information to the file text myfile.txt.

g = gpib('ni',0,1);
g.RecordName = 'myfile.txt';
fopen(g)
record(g)
fprintf(g,'*IDN?')
out = fscanf(g);

End the instrument control session.

fclose(g)
delete(g)
clear g

Use the type command to display myfile.txt at the command line.

Creating Multiple Record Files

When you initiate recording with the record function, the RecordMode property
determines if a new record file is created or if new information is appended to an existing
record file.

You can configure RecordMode to overwrite, append, or index. If RecordMode is
overwrite, then the record file is overwritten each time recording is initiated. If
RecordMode is append, then the new information is appended to the file specified by
RecordName. If RecordMode is index, a different disk file is created each time
recording is initiated. The rules for specifying a record file name are discussed in
“Specifying a File Name” on page 17-6.

Specifying a File Name

You specify the name of the record file with the RecordName property. You can specify
any value for RecordName, including a directory path, provided the file name is
supported by your operating system. Additionally, if RecordMode is index, then the file
name follows these rules:

17 Saving and Loading the Session

17-6

• Indexed file names are identified by a number. This number precedes the file name
extension and is increased by 1 for successive record files.

• If no number is specified as part of the initial file name, then the first record file does
not have a number associated with it. For example, if RecordName is myfile.txt,
then myfile.txt is the name of the first record file, myfile01.txt is the name of
the second record file, and so on.

• RecordName is updated after the record file is closed.
• If the specified file name already exists, then the existing file is overwritten.

Record File Format

The record file is an ASCII file that contains a record of one or more instrument control
sessions. You specify the amount of information saved to a record file with the
RecordDetail property.

RecordDetail can be compact or verbose. A compact record file contains the number
of values written to the instrument, the number of values read from the instrument, the
data type of the values, and event information. A verbose record file contains the
preceding information as well as the data transferred to and from the instrument.

Binary data with precision given by uchar, schar, (u)int8, (u)int16, or (u)int32 is
recorded as hexadecimal values. For example, if the integer value 255 is read from the
instrument as a 16-bit integer, the hexadecimal value 00FF is saved in the record file.
Single- and double-precision floating-point numbers are recorded as decimal values using
the %g format, and as hexadecimal values using the format specified by the IEEE
Standard 754-1985 for Binary Floating-Point Arithmetic.

The IEEE floating-point format includes three components — the sign bit, the exponent
field, and the significant field. Single-precision floating-point values consist of 32 bits,
and the value is given by

value = (-1)sign(2exp-127)(1.significand)

Double-precision floating-point values consist of 64 bits, and the value is given by

value = (-1)sign(2exp-1023)(1.significand)

The floating-point format component and the associated single-precision and double-
precision bits are given below.

 Debugging: Recording Information to Disk

17-7

Format Component Single-Precision Bits Double-Precision Bits
sign 1 1
exp 2-9 2-12
significand 10-32 13-64

For example, suppose you record the decimal value 4.25 using the single-precision
format. The record file stores 4.25 as the hex value 40880000, which is calculated from
the IEEE single-precision floating-point format. To reconstruct the original value,
convert the hex value to a decimal value using hex2dec:

dval = hex2dec('40880000')
dval =
 1.082654720000000e+009

Convert the decimal value to a binary value using dec2bin:

bval = dec2bin(dval,32)
bval =
01000000100010000000000000000000

The interpretation of bval is given by the preceding table. The left most bit indicates the
value is positive because (-1)0 = 1. The next 8 bits correspond to the exponent, which is
given by

exp = bval(2:9)
exp =
10000001

The decimal value of exp is 27+20 = 129. The remaining bits correspond to the significant,
which is given by

significand = bval(10:32)
significand =
00010000000000000000000

The decimal value of significand is 2-4 = 0.0625. You reconstruct the original value by
plugging the decimal values of exp and significand into the formula for IEEE singles:

value = (-1)0(2129 - 127)(1.0625)
value = 4.25

17 Saving and Loading the Session

17-8

Recording Information to Disk

This example extends “Reading and Writing Binary Data” on page 4-22 by recording the
associated information to a record file. Additionally, the structure of the resulting record
file is presented:

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib('ni',0,1);
2 Configure properties — Configure the input buffer to accept a reasonably large

number of bytes, and configure the timeout value to two minutes to account for slow
data transfer.

g.InputBufferSize = 50000;
g.Timeout = 120;

Configure g to execute the callback function instrcallback every time 5000 bytes
are stored in the input buffer.

g.BytesAvailableFcnMode = 'byte';
g.BytesAvailableFcnCount = 5000;
g.BytesAvailableFcn = @instrcallback;

Configure g to record information to multiple disk files using the verbose format.
The first disk file is defined as WaveForm1.txt.

g.RecordMode = 'index';
g.RecordDetail = 'verbose';
g.RecordName = 'WaveForm1.txt';

3 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)
4 Write and read data — Initiate recording.

record(g)

Configure the scope to transfer the screen display as a bitmap.

fprintf(g,'HARDCOPY:PORT GPIB')
fprintf(g,'HARDCOPY:FORMAT BMP')
fprintf(g,'HARDCOPY START')

 Debugging: Recording Information to Disk

17-9

Initiate the asynchronous read operation, and begin generating events.

readasync(g)

instrcallback is called every time 5000 bytes are stored in the input buffer. The
resulting displays are shown below.

BytesAvailable event occurred at 09:04:33 for the object: GPIB0-1.
BytesAvailable event occurred at 09:04:42 for the object: GPIB0-1.
BytesAvailable event occurred at 09:04:51 for the object: GPIB0-1.
BytesAvailable event occurred at 09:05:00 for the object: GPIB0-1.
BytesAvailable event occurred at 09:05:10 for the object: GPIB0-1.
BytesAvailable event occurred at 09:05:19 for the object: GPIB0-1.
BytesAvailable event occurred at 09:05:28 for the object: GPIB0-1.

Wait until all the data is stored in the input buffer, and then transfer the data to the
MATLAB workspace as unsigned 8-bit integers.

out = fread(g,g.BytesAvailable,'uint8');

Toggle the recording state from on to off. Because the RecordMode value is index,
the record file name is automatically updated.

record(g)
g.RecordStatus
ans =
off
g.RecordName
ans =
WaveForm2.txt

5 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(g)
delete(g)
clear g

The Record File Contents

To display the contents of the WaveForm1.txt record file,

type WaveForm1.txt

The record file contents are shown below. Note that data returned by the fread function
is in hex format (most of the bitmap data is not shown).

17 Saving and Loading the Session

17-10

Legend:
 * - An event occurred.
 > - A write operation occurred.
 < - A read operation occurred.

1 Recording on 18-Jun-2000 at 09:03:53.529. Binary data in
 little endian format.
2 > 18 ascii values.
 HARDCOPY:PORT GPIB
3 > 19 ascii values.
 HARDCOPY:FORMAT BMP
4 > 14 ascii values.
 HARDCOPY START
5 * BytesAvailable event occurred at 18-Jun-2000 at 09:04:33.334
6 * BytesAvailable event occurred at 18-Jun-2000 at 09:04:41.775
7 * BytesAvailable event occurred at 18-Jun-2000 at 09:04:50.805
8 * BytesAvailable event occurred at 18-Jun-2000 at 09:04:00.266
9 * BytesAvailable event occurred at 18-Jun-2000 at 09:05:10.306
10 * BytesAvailable event occurred at 18-Jun-2000 at 09:05:18.777
11 * BytesAvailable event occurred at 18-Jun-2000 at 09:05:27.778
12 < 38462 uint8 values.
 42 4d cf 03 00 00 00 00 00 00 3e 00 00 00 28 00
 00 00 80 02 00 00 e0 01 00 00 01 00 01 00 00 00
 00 00 00 96 00 00 00 00 00 00 00 00 00 00 00 00
 .
 .
 .
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff
13 Recording off.

 Debugging: Recording Information to Disk

17-11

Test & Measurement Tool

This chapter describes how to use the Test & Measurement Tool to access your hardware
interfaces and instrument drivers.

• “Test & Measurement Tool Overview” on page 18-2
• “Using the Test & Measurement Tool” on page 18-4

18

Test & Measurement Tool Overview

In this section...
“Instrument Control Toolbox Software Support” on page 18-2
“Navigating the Tree” on page 18-2

Instrument Control Toolbox Software Support

The Test & Measurement Tool (tmtool) enables you to configure and control resources
(instruments, serial devices, drivers, interfaces, etc.) accessible through the toolbox
without having to write the MATLAB script.

You can use the Test & Measurement Tool to manage your session with the toolbox. This
tool enables you to do the following:

• Detect available hardware and drivers.
• Connect to an instrument or device.
• Configure instrument or device settings.
• Read and write data.
• Automatically generate the MATLAB script.
• Visualize acquired data.
• Export acquired data to the MATLAB workspace.

Navigating the Tree

You start the Test & Measurement Tool by typing

tmtool

You navigate to the various hardware control panes using the tool's tree. Start by
selecting the toolbox you want to work with, which displays a set of instructions in the
right pane. These instructions explain the basic steps to establishing communication
with an instrument.

For example, the following figure shows the pane displayed when you select Instrument
Control Toolbox.

18 Test & Measurement Tool

18-2

 Test & Measurement Tool Overview

18-3

Using the Test & Measurement Tool

In this section...
“Overview of the Examples” on page 18-4
“Hardware” on page 18-4
“Instrument Objects” on page 18-11
“Instrument Drivers” on page 18-16

Overview of the Examples

These examples illustrates a typical session using the Test & Measurement Tool for
instrument control. The session entails communicating with a Tektronix TDS 210
oscilloscope via a GPIB interface.

To start the tool, on the MATLAB Command window, type:

tmtool

Hardware

When the tool displays, expand (click the +) the Instrument Control Toolbox node
in the tree. Next, expand the Hardware node. The tree now looks like this.

18 Test & Measurement Tool

18-4

Selecting the Interface and Scanning for GPIB Boards

Next, scan for installed GPIB boards by selecting the GPIB node. The right pane changes
to the Installed GPIB Board list. Click Scan to see what boards are installed. The
following figure shows the scan result from a system with one Capital Equipment Corp
and one Keithley® GPIB board.

Scanning for Instruments Connected to GPIB Boards

After determining what GPIB boards are installed, you must determine what
instruments are connected to those boards. Expand the GPIB node and select a board.

The right pane changes to the GPIB Instruments list. Click Scan to see what
instruments are connected to this board. The following figure shows the scan result from
a system with a Tektronix TDS 210 connected at primary address 8ˋ.

 Using the Test & Measurement Tool

18-5

Configuring the Interface

You can change the configuration of the interface by clicking the Configure tab. This
pane displays properties you can set to configure the instrument communication settings.
In the following view of the Configure pane, the Timeout property value has been set to
10 seconds.

18 Test & Measurement Tool

18-6

Establishing the Connection

Expand the ni-Board-0 node and select the instrument at primary address 4: PAD-8
(TEKTRONIX,TDS 210...). The right pane changes to the control pane you use for
writing and reading data to and from that instrument.

 Using the Test & Measurement Tool

18-7

Click Connect to establish communication with the instrument. The tool creates an
interface object representing the communication channel to the instrument.

Writing and Reading Data

Selecting the Communicate tab displays the pane you use to write and read data. You
can write and read data separately using the Write and Read buttons, or you can use
the Query button to write and read in a single operation.

The following figure shows the pane after a brief session involving the following steps:

1 Open communication with the instrument.
2 Enter *IDN? as Data to Write, and click Query (write/read). This executes the

identify command.
3 Enter CURVE? as Data to Write, and click Query. This retrieves the waveform data

from the scope.

18 Test & Measurement Tool

18-8

Exporting Instrument Data

You can export the data acquired from instruments to any of the following:

• MATLAB workspace as a variable
• Figure window as a plot
• MAT-file for storage in a file
• The MATLAB Variables editor for modification

To export data, select File > Export > Instrument Response(s) from the menu bar.
When the Data Exporter dialog box opens, choose the variables to export. The following
figure shows the Data Exporter set to export the curve data to the MATLAB workspace
as the variable data2.

 Using the Test & Measurement Tool

18-9

Note If you repeatedly generate a large amount of data in the Test and Measurement
tool, you must delete the data object after you export it to MATLAB. This will allow the
tool to return resources to MATLAB correctly and will prevent MATLAB from failing to
respond the next time you acquire data.

Exporting the GPIB Object

When you open a connection to an instrument, the Test & Measurement Tool creates an
instrument object automatically. You can export the GPIB instrument object created in
this example as any of the following:

• MATLAB workspace object that you can use as an argument in instrument control
commands

• File containing the call to the GPIB constructor and the commands to set object
properties

• MAT-file for storage in a file

To export the object, select File > Export > Instrument Object from the menu bar.
When the Object Exporter dialog box opens, choose the object to export. The following
figure shows the Object Exporter set to export the object to a file. (When you run that
file, it creates a new object with the equivalent settings.)

18 Test & Measurement Tool

18-10

Saving Your Instrument Control Session

The Session Log tab displays the code equivalent of your instrument control session.
You can save this code to a file so that you can execute the same commands
programmatically.

Select File > Save Session Log from the menu bar or click Save Session. From this
dialog box you can specify a file name and directory location for the file.

Instrument Objects

Interface Objects

The Test & Measurement Tool creates interface objects automatically when you open a
communication channel to an instrument by clicking the Communication Status
button. To explicitly create and configure an interface object:

1 Expand the Instrument Objects node in the tree, and select Interface
Objects. The Interface Objects pane appears on the right.

2 Click New Object to open the New Object Creation dialog box.

 Using the Test & Measurement Tool

18-11

3 Specify the object parameters and click OK to create the new object.

Device Objects

To create and configure a device object:

1 Expand the Instrument Objects node in the tree, and select Device Objects.
The Device Objects pane appears on the right.

2 Click New Object to open the New Object Creation dialog box. In this case, the
Instrument object type is already set for device.

3 Specify or browse for the instrument driver you want to use; then choose from among
the available interface objects, or create one if necessary.

4 Click OK to create the new device object.

Setting Instrument Object Properties

Whether the instrument objects are created automatically, created through the New
Object Creation dialog box, or created on the MATLAB Command window, the Test &
Measurement Tool enables you to set the properties of these objects. To change object
properties in the Test & Measurement Tool:

1 Expand the Instrument Objects node in the tree, then either Interface
Objects or Device Objects, and select the object whose properties you want to
set.

2 Click the Configure tab in the right pane.
3 Set properties displayed in this pane, as shown in the following figures.

18 Test & Measurement Tool

18-12

Configuring Interface Object Properties

 Using the Test & Measurement Tool

18-13

Configuring Device Object Properties

Communicating with Your Instrument

Using an Interface Object

When communicating with your instrument using an interface object, you send data to
instrument in the form of raw instrument commands. In the following figure, the Test &
Measurement Tool sends the *RST string to the TDS 210 oscilloscope via an interface
object. *RST is the oscilloscope's reset command.

18 Test & Measurement Tool

18-14

Communicating via an Interface Object

Using a Device Object

When communicating with your instrument using a device object, instead of employing
instrument commands, you invoke device object methods (functions) or you set device
object properties as provided by the MATLAB instrument driver for that instrument.

In the following figure, the Test & Measurement Tool resets a TDS 210 oscilloscope by
issuing a call to the devicereset function of the instrument driver. Communicating
this way, you don't need to know what the actual oscilloscope reset command is.

 Using the Test & Measurement Tool

18-15

Communicating via a Device Object

Instrument Drivers

The Test & Measurement Tool enables you to scan for installed drivers, and to use those
drivers when creating device objects.

MATLAB Instrument Drivers

MATLAB instrument drivers include

• MATLAB interface drivers
• MATLAB VXIplug&play drivers
• MATLAB IVI drivers

Select the MATLAB Instrument Drivers node in the tree. Then click Scan to get an
updated display of all the installed MATLAB instrument drivers found on the MATLAB
software path.

18 Test & Measurement Tool

18-16

When the Test & Measurement Tool scans for drivers, it makes them available as nodes
under the driver type node. Expand the MATLAB software Instrument Drivers
node to reveal the installed drivers. Select one of them to see the driver's details.

 Using the Test & Measurement Tool

18-17

You can choose to see the driver's properties or functions. When you select the particular
property or function, the tool displays that item's description.

VXIplug&play Drivers

For an example of scanning for installed VXIplug&play drivers with the Test &
Measurement Tool, see “VXI plug and play Drivers” on page 13-4.

IVI Drivers

For an example of scanning for installed IVI-C drivers with the Test & Measurement
Tool, see “Getting Started with IVI Drivers” on page 14-5. For using the Test &
Measurement Tool to examine or configure an IVI configuration store, see “Configuring
an IVI Configuration Store” on page 14-16.

18 Test & Measurement Tool

18-18

Using the Instrument Driver Editor

This chapter describes how to use the Instrument Driver Editor to create, import, or
modify instrument drivers.

• “MATLAB Instrument Driver Editor Overview” on page 19-2
• “Creating MATLAB Instrument Drivers” on page 19-5
• “Properties” on page 19-16
• “Functions” on page 19-31
• “Groups” on page 19-42
• “Using Existing Drivers” on page 19-58

19

MATLAB Instrument Driver Editor Overview
In this section...
“What Is a MATLAB Instrument Driver?” on page 19-2
“How Does a MATLAB Instrument Driver Work?” on page 19-3
“Why Use a MATLAB Instrument Driver?” on page 19-3

What Is a MATLAB Instrument Driver?

The Instrument Control Toolbox software provides the means of communicating directly
with a hardware instrument through an interface object. If you are programming directly
through an interface object, you need to program with the command language of the
instrument itself. Any substitution of instrument, such as make or model, may require a
change to the appropriate the MATLAB code.

Command
Line
or

M-File

Interface
Object

Hardware
Interface

Hardware
Instrument

Instrument-Level
Commands

A MATLAB instrument driver offers a layer of interpretation between you and the
instrument. The instrument driver contains all the necessary commands for
programming the instrument, so that you do not need to be aware of the specific
instrument commands. Instead, you can program the instrument with familiar or
consistent device object properties and functions.

The following figure shows how a device object and instrument driver offer a layer
between the command line and the interface object. The instrument driver handles the
instrument-level commands, so that as you program from the command line, you need
only manipulate device object properties and functions, rather than instrument
commands.

19 Using the Instrument Driver Editor

19-2

Command
Line
or

M-File

Device
Object

MATLAB
Instrument

Driver

Interface
Object

Hardware
Interface

Hardware
Instrument

Instrument-Level
Commands

Device Object
Properties and Functions

In addition to containing instrument commands, the instrument driver can also contain
the MATLAB code to provide analysis based upon instrument setup or data.

Note For many instruments, a MATLAB instrument driver already exists and you will
not need to create a MATLAB instrument driver for your instrument. For other
instruments, there may be a similar MATLAB instrument driver and you will need to
edit it. If you would like more information on how to edit a MATLAB instrument driver,
you may want to begin with “Modifying MATLAB Instrument Drivers” on page 19-58.

Note The Instrument Driver Editor is unable to open MDDs with non-ascii characters
either in their name or path on Mac platforms.

How Does a MATLAB Instrument Driver Work?

A MATLAB instrument driver contains information on the functionality supported by an
instrument. You access this functionality through a device object's properties and
functions.

When you query or configure a property of the device object using the get or set
function, or when you call (invoke) a function on the device object, the MATLAB
instrument driver provides a translation to determine what instrument commands are
written to the instrument or what the MATLAB code is executed.

Why Use a MATLAB Instrument Driver?

Using a MATLAB instrument driver isolates you from the instrument commands.
Therefore, you do not need to be aware of the instrument syntax, but can use the same
code for a variety of related instruments, ignoring the differences in syntax from one
instrument to the next.

 MATLAB Instrument Driver Editor Overview

19-3

For example, suppose you have two different oscilloscopes in your shop, each with its own
set of commands. If you want to perform the same tasks with the two different
instruments, you can create an instrument driver for each scope so that you can control
each with the same code. Then substitution of one instrument for another does not
require a change in the MATLAB code being used to control it, but only a substitution of
the instrument driver.

19 Using the Instrument Driver Editor

19-4

Creating MATLAB Instrument Drivers

In this section...
“Driver Components” on page 19-5
“MATLAB Instrument Driver Editor Features” on page 19-6
“Saving MATLAB Instrument Drivers” on page 19-6
“Driver Summary and Common Commands” on page 19-6
“Initialization and Cleanup” on page 19-10

Driver Components

A MATLAB instrument driver contains information about an instrument and defines the
functionality supported by the instrument.
Driver Component Description
Driver Summary and
Common Commands

Basic information about the instrument, e.g., manufacturer
or model number.

Initialization and Cleanup Code that is executed at various stages in the instrument
control session, e.g., code that is executed upon connecting
to the instrument.

Properties A property is generally used to configure or query an
instrument's state information.

Functions A function is generally used to control or configure an
instrument.

Groups A group combines common functionality of the instrument
into one component.

Depending on the instrument and the application for which the driver is being used, all
components of the driver may not be defined. You can define the necessary driver
components needed for your application with the MATLAB Instrument Driver Editor.

Note The Instrument Driver Editor is unable to open MDDs with non-ascii characters
either in their name or path on Mac platforms.

 Creating MATLAB Instrument Drivers

19-5

MATLAB Instrument Driver Editor Features

The MATLAB Instrument Driver Editor is a tool that creates or edits a MATLAB
instrument driver. Specifically, it allows you to do the following:

• Add/remove/modify properties.
• Add/remove/modify functions .
• Define the MATLAB code to wrap around commands sent to instrument.

You can open the MATLAB Instrument Driver Editor with the midedit command.

In the rest of this section, each driver component will be described and examples will be
shown on how to add the driver component information to a new MATLAB instrument
driver called tektronix_tds210_ex.mdd. The tektronix_tds210_ex.mdd driver
will define basic information and instrument functionality for a Tektronix TDS 210
oscilloscope.

Saving MATLAB Instrument Drivers

You can save an instrument driver to any directory with any name. It is recommended
that the instrument driver be saved to a directory in the MATLAB path and that the
name follows the format manufacturer_model.mdd. For example, an instrument that
is used with a Tektronix TDS 210 oscilloscope should be saved with the name
tektronix_tds210.mdd.

Driver Summary and Common Commands

You can assign basic information about the instrument to the MATLAB instrument
driver. Summary information can be used to identify the MATLAB instrument driver
and the instrument that it represents. Common commands can be used to reset, test, and
read error messages from the instrument. Together, this information can be used to
initialize and verify the instrument.

Topics in this section include

• “Driver Summary” on page 19-7
• “Common Commands” on page 19-7
• “Defining Driver Summary and Common Commands” on page 19-7

19 Using the Instrument Driver Editor

19-6

• “Verifying Driver Summary and Common Commands” on page 19-8

Driver Summary

You can assign basic information that describes your instrument in the instrument
driver. This information includes the manufacturer of the instrument, the model number
of the instrument and the type of the instrument. A version can also be assigned to the
driver to assist in revision control.

Common Commands

You can define basic common commands supported by the instrument. The common
commands can be accessed through device object properties and functions.

Common
Commands

Accessed with Device
Object's

Example Instrument
Command

Description

Identify InstrumentModel
property

*IDN? Returns the identification
string of the instrument

Reset devicereset
function

*RST Returns the instrument to a
known state

Self test selftest function *TST? Tests the instrument's
interface

Error geterror function ErrLog:Next? Retrieves the next instrument
error message

The MATLAB Instrument Driver Editor assigns default values for the Common
commands. The common commands should be modified appropriately to match the
instrument's command set.

Defining Driver Summary and Common Commands

This example defines the basic driver information and Common commands for a
Tektronix TDS 210 oscilloscope using the MATLAB Instrument Driver Editor:

1 Select the Summary node in the tree.
2 In the Driver summary pane:

a Enter Tektronix in the Manufacturer field.
b Enter TDS 210 in the Model field.
c Select Oscilloscope in the Instrument type field.

 Creating MATLAB Instrument Drivers

19-7

d Enter 1.0 in the Driver version field.
3 In the Common commands pane:

a Leave the Identify field with *IDN?.
b Leave the Reset field with *RST.
c Leave the Self test field with *TST?
d Update the Error field with ErrLog:Next?

4 Click the Save button. Specify the name of the instrument driver as
tektronix_tds210_ex.mdd.

Note For additional information on instrument driver nomenclature, refer to “Saving
MATLAB Instrument Drivers” on page 19-6.

Verifying Driver Summary and Common Commands

This procedure verifies the summary information defined in the Driver Summary and
Common commands panes. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210 oscilloscope
at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB Command Window,

19 Using the Instrument Driver Editor

19-8

1 Create the device object, obj, using the icdevice function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the defined driver information.

obj

Instrument Device Object Using Driver : tektronix_tds210_ex.mdd

Instrument Information
 Type Oscilloscope
 Manufacturer Tektronix
 Model TDS 210

Driver Information
 DriverType MATLAB Instrument Driver
 DriverName tekronix_tds210_ex.mdd
 DriverVersion 1.0

Communication State
 Status closed

instrhwinfo(obj)
ans =
 Manufacturer: 'Tektronix'
 Model: 'TDS 210'
 Type: 'Oscilloscope'
 DriverName: 'h:\documents\tektronix_tds210_ex.mdd'

3 Connect to the instrument.

connect(obj)
4 Verify the Common commands.

obj.InstrumentModel
ans =
 TEKTRONIX,TDS 210,0,CF:91.1CT FV:v2.03 TDS2MM:MMV:v1.04

devicereset(obj)
selftest(obj)
ans =
 0

geterror(obj)

 Creating MATLAB Instrument Drivers

19-9

ans =
 ''

5 Disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj g])

Initialization and Cleanup

This section describes how to define code that is executed at different stages in the
instrument control session, so that the instrument can be set to a desired state at
particular times. Specifically, you can define code that is executed after the device object
is created, after the device object is connected to the instrument, or before the device
object is disconnected from the instrument. Depending on the stage, the code can be
defined as a list of instrument commands that will be written to the instrument or as
MATLAB code.

Topics in this section include

• Definitions of the types of code that can be defined
• Examples of code for each supported stage
• Steps used to verify the code

Create Code

You define create code to ensure that the device object is configured to support the
necessary properties and functions:

• Create code is evaluated immediately after the device object is created.
• Create code can only be defined as a MATLAB software code.

Defining Create Code

This example defines the create code that ensures that the device object can transfer the
maximum waveform size, 2500 data points, supported by the Tektronix TDS 210
oscilloscope. In the MATLAB instrument driver editor,

1 Select the Initialization and Cleanup node in the tree.
2 Click the Create tab and enter the MATLAB software code to execute on device

object creation.

19 Using the Instrument Driver Editor

19-10

% Get the interface object and disconnect from instrument.
g = obj.Interface;
fclose(g);

% Configure the interface object's buffers to handle up to
% 2500 points (two bytes per point requires 5000 bytes).
g.InputBufferSize = 5000;
g.OutputBufferSize = 5000;

3 Click the Save button.

Verifying Create Code

This procedure verifies the MATLAB software create code defined. In this example, the
driver name is tektronix_tds210_ex.mdd. Communication with the Tektronix TDS
210 oscilloscope at primary address 2 is done via a Measurement Computing Corporation
GPIB board at board index 0.

1 From the MATLAB command line, create the interface object, g; and verify the
default input and output buffer size values.

g = gpib('mcc', 0, 2);
g.InputBufferSize
ans =
 512

 Creating MATLAB Instrument Drivers

19-11

g.OutputBufferSize
ans =
 512

2 Create the device object, obj, using the icdevice function.

obj = icdevice('tektronix_tds210_ex.mdd', g);
3 Verify the create code by querying the interface object's buffer sizes.

g.InputBufferSize
ans =
 5000

g.OutputBufferSize
ans =
 5000

4 Delete the objects.

delete([obj g])

Connect Code

In most cases you need to know the state or configuration of the instrument when you
connect the device object to it. You can define connect code to ensure that the instrument
is properly configured to support the device object's properties and functions.

Connect code is evaluated immediately after the device object is connected to the
instrument with the connect function. The connect code can be defined as a series of
instrument commands that will be written to the instrument or as MATLAB software
code.

Defining Connect Code

This example defines the connect code that ensures the Tektronix TDS 210 oscilloscope is
configured to support the device object properties and functions. Specifically, the
instrument will be returned to a known set of instrument settings (instrument reset) and
the instrument will be configured to omit headers on query responses.

1 From the MATLAB instrument driver editor, select the Initialization and
Cleanup node in the tree.

2 Click the Connect tab and enter the instrument commands to execute when the
device object is connected to the instrument.

• Select Instrument Commands from the Function style menu.

19 Using the Instrument Driver Editor

19-12

• Enter the *RST command in the Command text field, and then click Add.
• Enter the HEADER OFF command in the Command text field, and then click

Add.
3 Click the Save button.

Verifying Connect Code

This procedure verifies the instrument commands defined in the connect code. In this
example, the driver name is tektronix_tds210_ex.mdd. Communication with the
Tektronix TDS 210 oscilloscope at primary address 2 is done via a Measurement
Computing Corporation GPIB board at board index 0.

1 From the MATLAB command line, create the device object, obj, using the icdevice
function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 Connect to the instrument.

connect(obj)
3 Verify the connect code by querying the Header state of the instrument.

 Creating MATLAB Instrument Drivers

19-13

query(g, 'Header?')
ans =
 0

4 Disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj g])

Disconnect Code

By defining disconnect code, you can ensure that the instrument and the device object
are returned to a known state after communication with the instrument is completed.

Disconnect code is evaluated before the device object's being disconnected from the
instrument with the disconnect function. This allows the disconnect code to
communicate with the instrument. Disconnect code can be defined as a series of
instrument commands that will be written to the instrument or it can be defined as
MATLAB software code.

Defining Disconnect Code

This example defines the disconnect code that ensures that the Tektronix TDS 210
oscilloscope is returned to a known state after communicating with the instrument using
the device object.

1 From the MATLAB instrument driver editor, select the Initialization and
Cleanup node in the tree.

2 Click the Disconnect tab and enter the MATLAB software code to execute when the
device object is disconnected from the instrument.

• Select M-Code from the Function style menu.
• Define the MATLAB software code that will reset the instrument and configure

the interface object's buffers to their default values.

 % Get the interface object.
 g = obj.Interface;

 % Reset the instrument to a known state.
 fprintf(g, '*RST');

3 Click the Save button.

19 Using the Instrument Driver Editor

19-14

Verifying Disconnect Code

This procedure verifies the MATLAB software code defined in the disconnect code. In this
example, the driver name is tektronix_tds210_ex.mdd. Communication with the
Tektronix TDS 210 oscilloscope at primary address 2 is done via a Measurement
Computing Corporation GPIB board at board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 Connect to the instrument.

connect(obj)
3 Alter some setting on the instrument so that a change can be observed when you

disconnect. For example, the oscilloscope's contrast can be changed by pressing its
front pane Display button, and then the Contrast Decrease button.

4 Disconnect from the instrument and observe that its display resets.

disconnect(obj)
5 Delete the objects.

delete([obj g])

 Creating MATLAB Instrument Drivers

19-15

Properties
In this section...
“Properties: Overview” on page 19-16
“Property Components” on page 19-16
“Examples of Properties” on page 19-18

Properties: Overview

You can make the programming of instruments through device objects easier and more
consistent by using properties. A property can be used to query or set an instrument
setting or attribute. For example, an oscilloscope's trigger level may be controlled with a
property called TriggerLevel, which you can read or control with the get or set
function. Even if two different scopes have different trigger syntax, you can use the same
property name, TriggerLevel, to control them, because each scope will have its own
instrument driver.

Another advantage of properties is that you can define them with certain acceptable
values (enumerated) or limits (bounded) that can be checked before the associated
commands are sent to the instrument.

Property Components

The behavior of the property is defined by the following components.

Set Code

The set code defines the code that is executed when the property is configured with the
set function. The set code can be defined as an instrument command that will be
written to the instrument or it can be defined as MATLAB software code.

If the set code is MATLAB code, it can include any number of commands or MATLAB
software code wrapped around instrument commands to provide additional processing or
analysis.

If the set code is defined as an instrument command, then the command written to the
instrument will be the instrument command concatenated with a space and the value
specified in the call to set. For example, the set code for the DisplayContrast

19 Using the Instrument Driver Editor

19-16

property is defined as the instrument command DISplay:CONTRast. When the set
function below is evaluated, the instrument command sent to the instrument will be
DISplay:CONTRast 54.

set(obj, 'DisplayContrast', 54);

Get Code

The get code defines the code that is executed when the property value is queried with
the get function. The get code can be defined as an instrument command that will be
written to the instrument or it can be defined as MATLAB software code.

Note The code used for your property's get code and set code cannot include calls to the
fclose or fopen functions on the interface object being used to access your instrument.

Accepted Property Values

You can define the values that the property can be set to so that only valid values are
written to the instrument and an error would be returned before an invalid value could
be written to the instrument.

• A property value can be defined as a double, a character vector, or a Boolean.
• A property value that is defined as a double can be restricted to accept only doubles

within a certain range or a list of enumerated doubles. For example, a property could
be defined to accept a double within the range of [0 10] or a property could be
defined to accept one of the values [1,7,8,10].

• A property value that is defined as a character vector can be restricted to accept a list
of enumerated character vectors. For example, a property could be defined to accept
the character vectors min and max.

Additionally, a property can be defined to accept multiple property value definitions. For
example, a property could be defined to accept a double ranging between [0 10] or the
character vectors min and max.

Property Value Dependencies

A property value can be dependent upon another property's value. For example, in
controlling a power supply, the property VoltageLevel can be configured to the
following values:

 Properties

19-17

• A double ranging between 0 and 10 when the value of property
VoltageOutputRange is high

• A double ranging between 0 and 5 when the value of property VoltageOutputRange
is low

When VoltageLevel is configured, the value of VoltageOutputRange is queried. If the
value of VoltageOutputRange is high, then VoltageLevel can be configured to a
double ranging between 0 and 10. If the value of VoltageOutputRange is low, then
VoltageLevel can be configured to a double ranging between 0 and 5.

Default Value

The default value of the property is the value that the property is configured to when the
object is created.

Read-Only Value

The read-only value of the property defines when the property can be configured. Valid
options are described below.
Read-Only Value Description
Never The property can be configured at all times with the set function.
While Open The property can only be configured with the set function when

the device object is not connected to the instrument. A device
object is disconnected from the instrument with the disconnect
function.

Always The property cannot be configured with the set function.

Help Text

The help text provides information on the property. This information is returned with the
instrhelp function.

instrhelp(obj, 'PropertyName')

Examples of Properties

This section includes several examples of creating, setting, and reading properties, with
steps for verifying the behavior of these properties.

19 Using the Instrument Driver Editor

19-18

Creating a Double-Bounded Property

This example creates a property that will configure the Tektronix TDS 210 oscilloscope's
LCD display contrast. The oscilloscope display can be configured to a value in the range
[1 100]. In the MATLAB instrument driver editor,

1 Select the Properties node in the tree.
2 Enter the property name, DisplayContrast, in the Name text field and click the

Add button. The new property's name, DisplayContrast, appears in the Property
Name table.

3 Expand the Properties node in the tree to display all the defined properties.
4 Select the DisplayContrast node from the properties displayed in the tree.
5 Select the Code tab to define the set and get commands for the DisplayContrast

property.

• Select Instrument Commands in the Property style field.
• Enter DISplay:CONTRast? in the Get command text field.
• Enter DISplay:CONTRast in the Set command text field.

6 Select the Property Values tab to define the allowed property values.

• Select Double in the Data Type field.
• Select Bounded in the Constraint field.
• Enter 1.0 in the Minimum field.
• Enter 100.0 in the Maximum field.

 Properties

19-19

7 Select the General tab to finish defining the property behavior.

• Enter 50 in the Default value text field.
• Select never in the Read only field.
• In the Help text field, enter Sets or queries the contrast of the LCD

display.
8 Click the Save button.

19 Using the Instrument Driver Editor

19-20

Verifying the Behavior of the Property

This procedure verifies the behavior of the property. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210 oscilloscope
at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View DisplayContrast property and its current value.

obj.DisplayContrast
ans =
 50

3 Calling set on the DisplayContrast property lists the values to which you can set
the property.

set(obj, 'DisplayContrast')
[1.0 to 100.0]

4 Try setting the property to values inside and outside of the specified range.

 Properties

19-21

obj.DisplayContrast = 17
obj.DisplayContrast
ans =
 17
obj.DisplayContrast = 120
??? Invalid value for DisplayContrast. Valid values: a value
between 1.0 and 100.0.

5 View the help you wrote.

instrhelp(obj,'DisplayContrast')
DISPLAYCONTRAST [1.0 to 100.0]
Sets or queries the contrast of the LCD display.

6 List the DisplayContrast characteristics that you defined in the Property
Values and General tabs.

info = propinfo(obj,'DisplayContrast')
info =
 Type: 'double'
 Constraint: 'bounded'
 ConstraintValue: [1 100]
 DefaultValue: 50
 ReadOnly: 'never'
 InterfaceSpecific: 1

7 Connect to your instrument to verify the set and get code.

connect(obj)

When you issue the get function in the MATLAB software, the
tektronix_tds210_ex.mdd driver actually sends the DISplay:CONTRast?
command to the instrument.

obj.DisplayContrast
ans =
 17

When you issue the set function in the MATLAB software, the
tektronix_tds210_ex.mdd driver actually sends the DISplay:CONTRast 34
command to the instrument.

obj.DisplayContrast = 34)
8 Finally, disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj g])

19 Using the Instrument Driver Editor

19-22

Creating an Enumerated Property

This example creates a property that will select and display the Tektronix TDS 210
oscilloscope's cursor. The oscilloscope allows two types of cursor. It supports a horizontal
cursor that measures the vertical units in volts, divisions, or decibels, and a vertical
cursor that measures the horizontal units in time or frequency. In the MATLAB
instrument driver editor,

1 Select the Properties node in the tree.
2 Enter the property name, CursorType, in the Name text field and click the Add

button. The new property's name CursorType appears in the Property Name
table.

3 Expand the Properties node to display all the defined properties.
4 Select the CursorType node from the properties displayed in the tree.
5 Select the Code tab to define the set and get commands for the CursorType

property.

• Select Instrument Commands in the Property style field.
• Enter CURSor:FUNCtion? in the Get Command text field.
• Enter CURSor:FUNCtion in the Set Command text field.

6 Select the Property Values tab to define the allowed property values.

• Select String in the Data Type field.
• Select Enumeration in the Constraint field.
• Enter none in the New property value text field and click the Add button.

Then enter OFF in the Instrument Value table field.
• Similarly add the property value voltage, with instrument value HBArs.
• Similarly add the property value time, with instrument value VBArs.

 Properties

19-23

7 Select the General tab to finish defining the property behavior.

• Enter none in the Default value text field.
• Select never in the Read only field.
• In the Help text field, enter Specifies the type of cursor.

8 Click the Save button.

Verifying the Behavior of the Property

This procedure verifies the behavior of the property. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210 oscilloscope
at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the CursorType property's current value. Calling get on the object lists all its
properties.

19 Using the Instrument Driver Editor

19-24

get(obj)

Calling get on the CursorType property lists its current value.

obj.CursorType
ans =
 none

3 View acceptable values for the CursorType property. Calling set on the object lists
all its settable properties.

set(obj)

Calling set on the CursorType property lists the values to which you can set the
property.

set(obj, 'CursorType')
[{none} | voltage | time]

4 Try setting the property to valid and invalid values.

obj.CursorType = 'voltage';
obj.CursorType
ans =
 voltage
obj.CursorType = 'horizontal'
??? The 'horizontal' enumerated value is invalid.

5 View the help you wrote.

instrhelp(obj,'CursorType')
CURSORTYPE [{none} | voltage | time]
Specifies the type of cursor.

6 List the CursorType characteristics that you defined in the Property Values and
General tabs.

info = propinfo(obj,'CursorType')
info =
 Type: 'string'
 Constraint: 'enum'
 ConstraintValue: {3x1 cell}
 DefaultValue: 'none'
 ReadOnly: 'never'
 InterfaceSpecific: 1

info.ContraintValue
ans =
'none'

 Properties

19-25

'voltage'
'time'

7 Connect to your instrument to verify the set and get code.

connect(obj)

When you issue the set function in the MATLAB software, the
tektronix_tds210_ex.mdd driver actually sends the CURSor:FUNCtion VBArs
command to the instrument.

obj.CursorType = 'time'

When you issue the get function in the MATLAB software, the
tektronix_tds210_ex.mdd driver actually sends the CURSor:FUNCtion?
command to the instrument.

obj.CursorType
ans =
time

8 Finally disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj g])

A MATLAB Code Style Property

This example creates a property that will return the difference between two cursors of
the Tektronix TDS 210 oscilloscope. The oscilloscope allows two types of cursor. It
supports a horizontal cursor that measures the vertical units in volts, divisions, or
decibels, and a vertical cursor that measures the horizontal units in time or frequency.
The previous example created a property, CursorType, that selects and displays the
oscilloscope's cursor. In the MATLAB instrument driver editor,

1 Select the Properties node in the tree.
2 Enter the property name, CursorDelta, in the New Property text field and click

Add. The new property's name, CursorDelta, appears in the Property Name
table.

3 Expand the Properties node to display all the defined properties.
4 Select the CursorDelta node from the properties displayed in the tree.
5 Select the Code tab to define the set and get commands for the CursorDelta

property.

19 Using the Instrument Driver Editor

19-26

• Select M-Code in the Property style field.
• Since the CursorDelta property is read-only, no MATLAB software code will be

added to the MATLAB Set Function text field.
• The following MATLAB software code is added to the MATLAB Get Function

text field.

% Extract the interface object.
interface = obj.Interface;

% Determine the type of cursor being displayed.
type = obj.CursorType

% Based on the cursor type, query the instrument.
switch (type)
case 'none'
 propertyValue = 0;
case 'voltage'
 propertyValue = query(interface, 'CURSor:HBArs:DELTa?');
 propertyValue = str2double(propertyValue);
case 'time'
 propertyValue = query(interface, 'CURSor:VBArs:DELTa?');
 propertyValue = str2double(propertyValue);
end

 Properties

19-27

6 Select the Property Values tab to define the allowed property values.

• Select Double in the Data Type field.
• Select None in the Constraint field.

7 Select the General tab to finish defining the property behavior.

• Enter 0 in the Default value text field.
• Select always in the Read only field.
• In the Help text field, enter Returns the difference between the two

cursors.
8 Click the Save button.

Verifying the Behavior of the Property

This procedure verifies the behavior of the property. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210 oscilloscope

19 Using the Instrument Driver Editor

19-28

at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the CursorDelta property's current value. Calling get on the object lists all
its properties.

get(obj)
3 View the CursorDelta property’s current value.

obj.CursorDelta
ans =
 0

4 Calling set on the object lists all its settable properties. Note that as a read-only
property, CursorDelta is not listed in the output.

set(obj)
5 Setting the property to a value results in an error message.

obj.CursorDelta = 4)
??? Changing the 'CursorDelta' property of device objects is not
allowed.

6 View the help you wrote.

instrhelp(obj,'CursorDelta')
CURSORDELTA (double) (read only)
Returns the difference between the two cursors.

7 List the CursorDelta characteristics that you defined in the Property Values and
General tabs.

info = propinfo(obj,'CursorDelta')
info =
 Type: 'double'
 Constraint: 'none'
 ConstraintValue: []
 DefaultValue: 0
 ReadOnly: 'always'
 InterfaceSpecific: 1

8 Connect to your instrument to verify the get code.

connect(obj)

 Properties

19-29

When you issue the get function in the MATLAB software, the
tektronix_tds210_ex.mdd driver actually executes the MATLAB software code
that was specified.

obj.CursorDelta
ans =
 1.6000

9 Finally, disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj g])

19 Using the Instrument Driver Editor

19-30

Functions

In this section...
“Understanding Functions” on page 19-31
“Function Components” on page 19-31
“Examples of Functions” on page 19-32

Understanding Functions

Functions allow you to call the instrument to perform some task or tasks, which may
return results as text data or numeric data. The function may involve a single command
to the instrument, or a sequence of instrument commands. A function may include the
MATLAB software code to determine what commands are sent to the instrument or to
perform analysis on data returned from the instrument. For example, a function may
request that a meter run its self-calibration, returning the status as a result. Another
function may read a meter's scaling, request a measurement, adjust the measured data
according to the scale reading, and then return the result.

Function Components

The behavior of the function is defined by the components described below.

MATLAB Code

The MATLAB code defines the code that is executed when the function is evaluated with
the invoke function. The code can be defined as an instrument command that will be
written to the instrument or it can be defined as the MATLAB software code.

If the code is defined as an instrument command, the instrument command can be
defined to take an input argument. All occurrences of <input argument name> in the
instrument command are substituted with the input value passed to the invoke
function. For example, if a function is defined with an input argument, start, and the
instrument command is defined as Data:Start <start>, and a start value of 10 is
passed to the invoke function, the command Data:Start 10 is written to the
instrument.

 Functions

19-31

If the code is defined as an instrument command, the instrument command can also be
defined to return an output argument. The output argument can be returned as numeric
data or as text data.

If the code is defined as the MATLAB software code, you can determine which commands
are sent to the instrument, and the data results from the instrument can be
manipulated, adjusted, or analyzed as needed.

Note The code used for your function's MATLAB software code cannot include calls to
the fclose or fopen functions on the interface object being used to access your
instrument.

Help Text

The help text provides information on the function.

Examples of Functions

This section includes several examples of functions, and steps to verify the behavior of
these functions.

Simple Function

This example creates a function that will cause the Tektronix TDS 210 oscilloscope to
adjust its vertical, horizontal and trigger controls to display a stable waveform. In the
MATLAB instrument driver editor,

1 Select the Functions node in the tree.
2 Enter the function name, autoset, in the Add function text field and click the

Add button. The new function's name, autoset, appears in the Function Name
table.

3 Expand the Functions node to display all the defined functions.
4 Select the autoset node from the functions displayed in the tree.
5 Select the Code tab to define commands executed for this function.

• Select Instrument Commands in the Function style field.
• In the Function commands pane, enter AUTOSet EXECute in the Add

command field and click the Add button.

19 Using the Instrument Driver Editor

19-32

6 Select the Help tab to define the help text for this function.

• In the Help text field, enter INVOKE(OBJ, 'autoset') causes the
oscilloscope to adjust its vertical, horizontal, and trigger
controls to display a stable waveform.

7 Click the Save button.

Verifying the Behavior of the Function

This procedure verifies the behavior of the function. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210 oscilloscope
at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the method you created.

methods(obj)

Methods for class icdevice:

 Functions

19-33

Contents error instrhwinfo open
class fieldnames instrnotify openvar
close get instrument propinfo
connect geterror invoke selftest
ctranspose horzcat isa set
delete icdevice isequal sim
devicereset igetfield isetfield size
disconnect inspect isvalid subsasgn
disp instrcallback length subsref
display instrfind methods vertcat
end instrfindall ne
eq instrhelp obj2mfile

Driver specific methods for class icdevice:

autoset
3 View the help you wrote.

instrhelp(obj, 'autoset')
INVOKE(OBJ, 'autoset') causes the oscilloscope to adjust its
vertical, horizontal, and trigger controls to display a stable
waveform.

4 Using the controls on the instrument, set the scope so that its display is unstable.
For example, set the trigger level outside the waveform range so that the waveform
scrolls across the display.

5 Connect to your instrument and execute the function. Observe how the display of the
waveform stabilizes.

connect(obj)
invoke(obj, 'autoset')

6 Disconnect from your instrument and delete the object.

disconnect(obj)
delete([obj g])

Function with Instrument Commands that Use Input and Output Arguments

This example creates a function that configures which waveform will be transferred from
the Tektronix TDS 210 oscilloscope, and configures the waveform's starting and ending
data points. In the MATLAB instrument driver editor,

1 Select the Functions node in the tree.

19 Using the Instrument Driver Editor

19-34

2 Enter the function name, configureWaveform, in the Add function text field and
click the Add button. The new function's name, configureWaveform, appears in
the Function Name pane.

3 Expand the Functions node to display all the defined functions.
4 Select the configureWaveform node from the functions displayed in the tree.
5 Select the Code tab to define commands executed for this function.

• Select Instrument Commands in the Function style field.
• Enter the input arguments source, start, stop in the Input arguments

field.
• Enter Data:Source <source> in the Add command field and click the Add

button. In the table, select an Output type of None and a Format type of N/A.
• Similarly, add the command: Data:Source? with ASCII Output and text

Format.
• Similarly, add the command: Data:Start <start> with NONE Output and N/A

Format.
• Similarly, add the command: Data:Start? with ASCII Output and numeric

Format.
• Similarly, add the command: Data:Stop <stop> with NONE Output and N/A

Format.
• Similarly, add the command: Data:Stop? with ASCII Output and numeric

Format.

 Functions

19-35

6 Select the Help tab to define the help text for this function.

• In the Help text field, enter [SOURCE, START, STOP] = INVOKE(OBJ,
'configureWaveform', SOURCE, START, STOP) configures the
waveform that will be transferred from the oscilloscope.

7 Click the Save button.

Verifying the Behavior of the Function

This procedure verifies the behavior of the function. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210 oscilloscope
at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the method you created.

methods(obj)

Methods for class icdevice:

19 Using the Instrument Driver Editor

19-36

Contents error instrhwinfo open
class fieldnames instrnotify openvar
close get instrument propinfo
connect geterror invoke selftest
ctranspose horzcat isa set
delete icdevice isequal sim
devicereset igetfield isetfield size
disconnect inspect isvalid subsasgn
disp instrcallback length subsref
display instrfind methods vertcat
end instrfindall ne
eq instrhelp obj2mfile

Driver specific methods for class icdevice:

autoset configureWaveform
3 View the help you wrote.

instrhelp(obj, 'configureWaveform')

[SOURCE, START, STOP] = INVOKE(OBJ, 'configureWaveform', SOURCE,
START, STOP) configures the waveform that will be transferred from
the oscilloscope.

4 Connect to your instrument and execute the function.
connect(obj)
[source, start, stop] = invoke(obj, 'configureWaveform', 'CH1',
1, 500)
source =
CH1

start =
 1

stop =
 500
[source, start, stop] = invoke(obj, 'configureWaveform', 'CH2',
0, 3500)
source =
CH2

start =
 1

 Functions

19-37

stop =
 2500

5 Disconnect from your instrument and delete the object.

disconnect(obj)
delete([obj g])

MATLAB Code Style Function

This example creates a function that will transfer and scale the waveform from the
Tektronix TDS 210 oscilloscope. In the MATLAB instrument driver editor,

1 Select the Functions node in the tree.
2 Enter the function name, getWaveform, in the Add function text field and click

the Add button. The new function's name, getWaveform, appears in the Function
Name table.

3 Expand the Functions node to display all the defined functions.
4 Select the getWaveform node from the functions displayed in the tree.
5 Select the Code tab to define commands executed for this function.

• Select M-Code in the Function style field.
• Update the function line in the Define MATLAB function text field to include

an output argument.

function yout = getWaveform(obj)
• Add the following MATLAB software code to the Define MATLAB function text

field. (The instrument may require a short pause before any statements that read
a waveform, to allow its completion of the data collection.)

% Get the interface object.
g = obj.Interface;

% Configure the format of the data transferred.
fprintf(g, 'Data:Encdg SRIBinary');
fprintf(g, 'Data:Width 1');

% Determine which waveform is being transferred.
source = query(g, 'Data:Source?');

% Read the waveform.
fprintf(g, 'Curve?');
ydata = binblockread(g, 'int8');

19 Using the Instrument Driver Editor

19-38

% Read the trailing terminating character.
fscanf(g);

% Scale the data.
fprintf(g, ['WFMPre:' source ':Yoff?']);
yoffset = fscanf(g, '%g');

fprintf(g, ['WFMPre:' source ':YMult?']);
ymult = fscanf(g, '%g');

yout = (ydata*ymult) + yoffset;

6 Click the Help tab to define the help text for this function.

 Functions

19-39

• In the Help text field, enter DATA = INVOKE(OBJ, 'getWaveform')
transfers and scales the waveform from the oscilloscope.

7 Click the Save button.

Verifying the Behavior of the Function

This procedure verifies the behavior of the function. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210 oscilloscope
at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the method you created.

methods(obj)

Methods for class icdevice:

Contents error instrhwinfo open
class fieldnames instrnotify openvar
close get instrument propinfo
connect geterror invoke selftest
ctranspose horzcat isa set
delete icdevice isequal sim
devicereset igetfield isetfield size
disconnect inspect isvalid subsasgn
disp instrcallback length subsref
display instrfind methods vertcat
end instrfindall ne
eq instrhelp obj2mfile

Driver specific methods for class icdevice:

autoset configureWaveform getWaveform
3 View the help you wrote.

instrhelp(obj, 'getWaveform')
DATA = INVOKE(OBJ, 'getWaveform') transfers and scales the
waveform from the oscilloscope.

4 Connect to your instrument and execute the function.

19 Using the Instrument Driver Editor

19-40

connect(obj)

Configure the waveform that is going to be transferred.

invoke(obj, 'configureWaveform', 'CH1', 1, 500);

Transfer the waveform.

data = invoke(obj, 'getWaveform');

Analyze and view the waveform.

size(data)
ans =
 500 1

plot(data)
5 Disconnect from your instrument and delete the object.

disconnect(obj)
delete([obj g])

 Functions

19-41

Groups
In this section...
“Group Components” on page 19-42
“Examples of Groups” on page 19-43

Group Components
A group may be used to set or query the same property on several elements, or to query
several related properties, at the same time. For example, all input channels on an
oscilloscope can be scaled to the same value with a single command; or all current
measurement setups can be retrieved and viewed at the same time.

A group consists of one or more group objects. The objects in the group share a set of
properties and functions. Using these properties and functions you can control the
features of the instrument represented by the group. In order for the group objects to
control the instrument correctly, the group must define a selection command for the
group and an identification string for each object in the group.

Selection Command

The selection command is an instrument command that configures the instrument to use
the capability or physical component represented by the current group object. Note, the
instrument might not have a selection command.

Identification String

The identification string identifies an object in the group. The number of identification
strings listed by the group defines the number of objects in the group. The identification
string can be substituted into the instrument commands written to the instrument.

When a group object instrument command is written to the instrument, the following
steps occur:

1 The selection command for the group is determined by the driver.
2 The identification string for the group object is determined by the driver.
3 If the selection command contains the string <ID>, it is replaced with the

identification string.
4 The selection command is written to the instrument. If empty, nothing is written to

the instrument.

19 Using the Instrument Driver Editor

19-42

5 If the instrument command contains the string <ID>, it is replaced with the
identification string.

6 The instrument command is written to the instrument.

Examples of Groups
This section includes several examples of groups, with steps to verify the code.

Creating a One-Element Group

This example combines the trigger capabilities of the Tektronix TDS 210 oscilloscope into
a trigger group. The oscilloscope allows the trigger source and slope settings to be
configured. In the MATLAB instrument driver editor,

1 Select the Groups node in the tree.
2 Enter the group name, Trigger, in the Add Group text field and click Add.
3 Expand the Groups node to display all the defined groups.
4 Select the Trigger node in the tree.
5 Select the Definition tab.

Since the oscilloscope has only one trigger, there is not a command that will select
the current trigger. The Selection command text field will remain empty.

6 Select the Help tab to finish defining the group behavior.

In the Help text field, enter Trigger is a trigger group. The trigger
group object contains properties that configure and query the
oscilloscope's triggering capabilities.

 Groups

19-43

7 Click the Save button.

Verifying the Group Behavior

This procedure verifies the group information defined. In this example, the driver name
is tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Measurement Computing Corporation
GPIB board at board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the group you created. Note that the HwName property is the group object
identification string.

get(obj)
obj.Trigger
HwIndex: HwName: Type: Name:
1 Trigger1 scope-trigger Trigger1

3 View the help.

instrhelp(obj, 'Trigger')
TRIGGER (object) (read only)
Trigger is a trigger group. The trigger group object contains
properties that configure and query the oscilloscope's triggering
capabilities.

4 Delete the objects.

delete([obj g])

Defining the Group Object Properties for a One-Element Group

This example defines the properties for the Trigger group object created in the previous
example. The Tektronix TDS 210 oscilloscope can trigger from CH1 or CH2 when the
data has a rising or falling slope.

First, the properties Source and Slope are added to the trigger group object. In the
MATLAB instrument driver editor,

1 Expand the Trigger group node to display the group object's properties and
functions.

2 Select the Properties node to define the Trigger group object properties.

19 Using the Instrument Driver Editor

19-44

3 Enter the property name Source in the Add property text field and click the Add
button

4 Enter the property name Slope in the Add property text field and click the Add
button.

5 Expand the Properties node to display the group object's properties.

Next, define the behavior of the Source property:

1 Select the Source node in the tree.
2 Select the Code tab to define the set and get commands for the Source property.

• Select Instrument Commands in the Property style field.
• Enter TRIGger:MAIn:EDGE:SOUrce? in the Get command text field.
• Enter TRIGger:MAIn:EDGE:SOUrce in the Set command text field.

3 Select the Property Values tab to define the allowed property values.

• Select String in the Data Type field.
• Select Enumeration in the Constraint field.
• Enter CH1 in the Add property value text field and click the Add button. Then

enter CH1 in the Instrument Value table field.
• Similarly, add the enumeration: CH2, CH2.

4 Select the General tab to finish defining the property behavior.

• Enter CH1 in the Default value text field.
• Select never in the Read only field.
• In the Help text field, enter Specifies the source for the main edge

trigger.

Next, define the behavior of the Slope property:

1 Select the Slope node in the tree.
2 Select the Code tab to define the set and get commands for the Slope property.

• Select Instrument Commands in the Property style field.
• Enter TRIGger:MAIn:EDGE:SLOpe? in the Get command text field.
• Enter TRIGger:MAIn:EDGE:SLOpe in the Set command text field.

 Groups

19-45

3 Select the Property Values tab to define the allowed property values.

• Select String in the Data Type field.
• Select Enumeration in the Constraint field.
• Enter falling in the Add property value text field and click the Add button.

Then enter FALL in the Instrument Value table field.
• Similarly add the enumeration: rising, RISe.

4 Select the General tab to finish defining the property behavior.

• Enter falling in the Default value text field.
• Select never in the Read only field.
• In the Help text field, enter Specifies a rising or falling slope for

the main edge trigger.
5 Click the Save button.

Verifying Properties of the Group Object in MATLAB

This procedure verifies the properties of the Trigger group object. In this example, the
driver name is tektronix_tds210_ex.mdd. Communication with the Tektronix TDS

19 Using the Instrument Driver Editor

19-46

210 oscilloscope at primary address 2 is done via a Measurement Computing Corporation
GPIB board at board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 Extract the trigger group objects, t, from the device object.

t = obj.Trigger
 HwIndex: HwName: Type: Name:
 1 Trigger1 scope-trigger Trigger1

3 Access specific properties to list its current value.

t.Source
ans =
 CH1

t.Slope
ans =
 falling

4 Calling set on a specific property lists the values to which you can set the property.

set(t, 'Source')
[{CH1} | CH2]

set(t, 'Slope')
[{falling} | rising]

5 Try setting the property to valid and invalid values.

t.Source = CH2;

t.Slope ='rising'

t.'Source
ans =
 CH2

t.Slope
ans =
 'rising'

t.Source = 'CH3'
??? The 'CH3' enumerated value is invalid.

 Groups

19-47

t.Slope = 'steady'
??? The 'steady' enumerated value is invalid.

6 View the help you wrote.

instrhelp(t, 'Source')
SOURCE [{CH1} | CH2]
Specifies the source for the main edge trigger.

instrhelp(t, 'Slope')
SLOPE [{falling} | rising]
Specifies a rising or falling slope for the main edge trigger.

7 List the group object characteristics that you defined in the Property Values and
General tabs.

propinfo(t, 'Source')
ans =
 Type: 'string'
 Constraint: 'enum'
 ConstraintValue: {2x1 cell}
 DefaultValue: 'CH1'
 ReadOnly: 'never'
 InterfaceSpecific: 1

propinfo(t, 'Slope')
ans =
 Type: 'string'
 Constraint: 'enum'
 ConstraintValue: {2x1 cell}
 DefaultValue: 'falling'
 ReadOnly: 'never'
 InterfaceSpecific: 1

8 Connect to your instrument to verify the set and get code.

connect(obj)

Note When you issue the get function on the Source property for the trigger object,
the textronix_tds210_ex.mdd driver actually sends the
TRIGger:MAIn:EDGE:SOUrce? command to the instrument.

t.Source
ans =
CH1

19 Using the Instrument Driver Editor

19-48

Note When you issue the set function on the Slope property for the trigger object,
the textronix_tds210_ex.mdd driver actually sends the
TRIGger:MAIn:EDGE:SLOpe RISe command to the instrument.

t.Slope = 'rising'
9 Disconnect from your instrument and delete the objects.

disconnect(obj)
delete([obj g])

Creating a Four-Element Group

This example combines the measurement capabilities of the Tektronix TDS 210
oscilloscope into a measurement group. The oscilloscope allows four measurements to be
taken at a time. In the MATLAB instrument driver editor,

1 Select the Groups node in the tree.
2 Enter the group name, Measurement, in the Add group text field and click Add.
3 Expand the Groups node to display all the defined groups.
4 Select the Measurement node in the tree.
5 Select the Definition tab.

• The oscilloscope does not define an instrument command that will define the
measurement that is currently being calculated. The Selection command text
field will remain empty.

• In the Identifier Name listing, change Measurement1 to Meas1 to define the
identification string for the first measurement group object in the group.

• Enter the identifiers Meas2, Meas3, and Meas4 for the remaining measurement
group objects by typing each in the Identifier text field and clicking Add after
each.

 Groups

19-49

6 Select the Help tab to finish defining the group behavior.

• In the Help text field, enter Measurement is an array of measurement
group objects. A measurement group object contains properties
related to each supported measurement on the oscilloscope.

7 Click the Save button.

Verifying the Group Behavior

This procedure verifies the group information defined. In this example, the driver name
is tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Measurement Computing Corporation
GPIB board at board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the group you created. Note that the HwName property is the group object
get(obj).

obj.Measurement

HwIndex: HwName: Type: Name:
1 Meas1 scope-measurement Measurement1
2 Meas2 scope-measurement Measurement2
3 Meas3 scope-measurement Measurement3
4 Meas4 scope-measurement Measurement4

19 Using the Instrument Driver Editor

19-50

3 View the help.

instrhelp(obj, 'Measurement')
MEASUREMENT (object) (read only)
Measurement is an array of measurement group objects. A
measurement group object contains properties related to each
supported measurement on the oscilloscope.

4 Delete the objects.

delete([obj g])

Defining the Group Object Properties for a Four-Element Group

This example defines the properties for the Measurement group object created in the
previous example. The Tektronix TDS 210 oscilloscope can calculate the frequency,
mean, period, peak to peak value, root mean square, rise time, fall time, positive pulse
width, or negative pulse width of the waveform of Channel 1 or Channel 2.

First, the properties MeasurementType, Source, Value, and Units will be added to the
Measurement group object.

1 Expand the Measurement group node to display the group object's properties and
methods.

2 Select the Properties node to define the Measurement group object properties.
3 Enter the property name MeasurementType in the Add property text field and

click the Add button.
4 Enter the property name Source in the Add property text field and click the Add

button.
5 Enter the property name Value in the Add property text field and click the Add

button.
6 Enter the property name Units in the Add property text field and click the Add

button.
7 Expand the Properties node to display the group object's properties.

 Groups

19-51

Next, define the behavior of the MeasurementType property:

1 Select the MeasurementType node in the tree.
2 Select the Code tab to define the set and get commands for the MeasurementType

property.

• Select Instrument Commands in the Property style field.
• Enter Measurement:<ID>:Type? in the Get command text field.
• Enter Measurement:<ID>:Type in the Set command text field.

3 Select the Property Values tab to define the allowed property values.

• Select String in the Data Type field.
• Select Enumeration in the Constraint field.
• Enter frequency in the Add property value text field and click the Add

button. Then enter FREQuency in the Instrument Value table field.
• Add the enumeration: mean, MEAN.
• Add the enumeration: period, PERIod.
• Add the enumeration: pk2pk, PK2pk.
• Add the enumeration: rms, CRMs.
• Add the enumeration: riseTime, RISe.

19 Using the Instrument Driver Editor

19-52

• Add the enumeration: fallTime, FALL.
• Add the enumeration: posWidth, PWIdth.
• Add the enumeration: negWidth, NWIdth.
• Add the enumeration: none, NONE.

4 Select the General tab to finish defining the property behavior.

• Enter none in the Default value text field.
• Select never in the Read only field.
• In the Help text field, enter Specifies the measurement type.

Next, define the behavior of the Source property.

1 Select the Source node in the tree.
2 Select the Code tab to define the set and get commands for the Source property.

 Groups

19-53

• Select Instrument Commands in the Property style field.
• Enter Measurement:<ID>:Source? in the Get command field.
• Enter Measurement:<ID>:Source in the Set command field.

3 Select the Property Values tab to define the allowed property values.

• Select String in the Data Type field.
• Select Enumeration in the Constraint field.
• Enter CH1 in the Add property value text field and click the Add button. Then

enter CH1 in the Instrument Value table field.
• Similarly add the enumeration: CH2, CH2.

4 Select the General tab to finish defining the property behavior.

• Enter CH1 in the Default value text field.
• Select never in the Read only field.
• In the Help text field, enter Specifies the source of the measurement.

Next, define the behavior of the Units property.

1 Select the Units node in the tree.
2 Select the Code tab to define the set and get commands for the Units property.

• Select Instrument Commands in the Property style field.
• Enter Measurement:<ID>:Units? in the Get command text field.
• Since the Units property is read-only, leave the Set command text field empty.

3 Select the Property Values tab to define the allowed property values.

• Select String in the Data Type field.
• Select None in the Constraint field.

4 Select the General tab to finish defining the property behavior.

• Enter volts in the Default value text field.
• Select always in the Read only field.
• In the Help text field, enter Returns the measurement units.

Finally, define the behavior of the Value property.

19 Using the Instrument Driver Editor

19-54

1 Select the Value node in the tree.
2 Select the Code tab to define the set and get commands for the Value property.

• Select Instrument Commands in the Property style field.
• Enter Measurement:<ID>:Value? in the Get command text field.
• Since the Value property is read-only, leave the Set command text field empty.

3 Select the Property Values tab to define the allowed property values.

• Select Double in the Data Type field.
• Select None in the Constraint field.

4 Select the General tab to finish defining property behavior.

• Enter 0 in Default value field.
• Select always in the Read only field.
• In the Help text field, enter Returns the measurement value.

5 Click the Save button.

Verifying the Properties of the Group Object in the MATLAB software

This procedure verifies the properties of the measurement group object. In this example,
the driver name is tektronix_tds210_ex.mdd. Communication with the Tektronix
TDS 210 oscilloscope at primary address 2 is done via a Measurement Computing
Corporation GPIB board at board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('mcc', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 Extract the measurement group objects, m, from the device object.

m = obj.Measurement

HwIndex: HwName: Type: Name:
1 Meas1 scope-measurement Measurement1
2 Meas2 scope-measurement Measurement2
3 Meas3 scope-measurement Measurement3
4 Meas4 scope-measurement Measurement4

3 View the current values for the properties of the first group object. Calling get on
the object lists all its properties.

m(1)

 Groups

19-55

4 Calling get on a specific property lists its current value.

m(1).MeasurementType

ans =
none

m(1).Source

ans =
CH1

m(1).Units

ans =
volts

m(1).Value

ans =
'none' 'CH1' 'volts' [0]

5 View the acceptable values for the properties of the group object. Calling set on the
object lists all its settable properties.

set(m(1))

set(m(1), 'MeasurementType')
[frequency | period | {none} | mean | pk2pk | rms | riseTime |
fallTime | posWidth | negWidth]

set(m(1), 'Source')
[{CH1} | CH2]

6 Try setting the property to valid and invalid values.

m(1).Source = 'CH2'
m(1).Source
ans =
CH2
m(1).Source = 'CH5'
??? The 'CH5' enumerated value is invalid.

7 View the help you wrote.

instrhelp(m(1), 'Value')
VALUE (double) (read only)
Returns the measurement value.

19 Using the Instrument Driver Editor

19-56

8 List the group object characteristics that you defined in the Property Values and
General tabs.

propinfo(m(1), 'Units')
ans =
 Type: 'string'
 Constraint: 'none'
 ConstraintValue: []
 DefaultValue: 'volts'
 ReadOnly: 'always'
 InterfaceSpecific: 1

9 Connect to your instrument to verify the set and get code.

connect(obj)

Note When you issue the get function on the MeasurementType property for the
first measurement object in the group, the textronix_tds210_ex.mdd driver
actually sends the Measurement:Meas1:Type? command to the instrument.

m(1).MeasurementType
ans =
frequency

Note When you issue the set function on the Source property for the second
measurement object in the group, the textronix_tds210_ex.mdd driver actually
sends the Measurement:Meas2:Source CH2 command to the instrument.

m(2).Source = 'CH2';
10 Disconnect from your instrument and delete the objects.

disconnect(obj)
delete([obj g])

 Groups

19-57

Using Existing Drivers

In this section...
“Modifying MATLAB Instrument Drivers” on page 19-58
“Importing VXIplug&play and IVI Drivers” on page 19-59

Modifying MATLAB Instrument Drivers

If a MATLAB instrument driver does not exist for your instrument, it may be that a
MATLAB instrument driver for an instrument similar to yours does exist. Rather than
creating a new MATLAB instrument driver, you may choose to edit an existing MATLAB
instrument driver. An existing MATLAB instrument driver can be opened in the
MATLAB instrument driver editor with the midedit function.

midedit('drivername')

Deleting an Existing Property, Function, or Group

1 Select the property, function, or group in the tree.
2 Select the Edit menu.
3 Select the Delete menu item.

Renaming an Existing Property, Function, or Group

1 Select the property, function, or group in the tree.
2 Select the Edit menu.
3 Select the Rename menu item.

Other Settings and Tasks

Refer to “Creating MATLAB Instrument Drivers” on page 19-5 for information on

• Defining summary information
• Defining initialization and cleanup code
• Creating a new property
• Creating a new function
• Creating a new group

19 Using the Instrument Driver Editor

19-58

Importing VXIplug&play and IVI Drivers

The MATLAB Instrument Driver Editor can import a VXIplug&play or IVI driver. You
can evaluate or set the driver's functions and properties, and the modified driver can be
saved for further use:

1 Open the MATLAB Instrument Driver Editor with midedit.
2 Click the File menu, and select Import.

The Import Driver dialog box appears, showing the installed VXIplug&play and
IVI drivers.

3 Select the desired driver and click Import.

The MATLAB Instrument Driver Editor creates a MATLAB instrument driver based on
the properties and/or functions in the original VXIplug&play or IVI driver. The editor
displays the new driver's summary information, groups, properties, and functions.

With the MATLAB Instrument Driver Editor, you can

• Create, delete, modify, or rename properties, functions, or groups
• Add code around instrument commands for analysis
• Add create, connect, and disconnect code
• Save the driver as a separate MATLAB VXIplug&play instrument driver or MATLAB

IVI instrument driver

 Using Existing Drivers

19-59

Using the Instrument Driver Testing Tool

This chapter describes how to use the Instrument Driver Testing Tool to verify the
functionality of your instrument drivers.

• “Instrument Driver Testing Tool Overview” on page 20-2
• “Setting Up Your Test” on page 20-5
• “Defining Test Steps” on page 20-11
• “Saving Your Test” on page 20-24
• “Testing and Results” on page 20-26

20

Instrument Driver Testing Tool Overview

In this section...
“Functionality” on page 20-2
“Drivers” on page 20-2
“Test Structure” on page 20-3
“Starting” on page 20-3
“Example” on page 20-4

Functionality

This section provides an overview of the MATLAB Instrument Driver Testing Tool and
examples showing its capabilities and usage.

The MATLAB Instrument Driver Testing Tool provides a graphical environment for
creating a test to verify the functionality of a MATLAB instrument driver.

The MATLAB Instrument Driver Testing Tool provides a way to do the following:

• Verify property behavior.
• Verify function behavior.
• Save the test as a test file, a MATLAB code, or driver function.
• Export the test results to MATLAB workspace, figure window, MAT-file, or the

MATLAB Variables editor.
• Save test results as an HTML page.

Drivers

You can use the MATLAB Instrument Driver Testing Tool to test any MATLAB
instrument driver, which include:

• MATLAB interface drivers
• MATLAB VXIplug&play drivers
• MATLAB IVI drivers

20 Using the Instrument Driver Testing Tool

20-2

MATLAB VXIplug&play drivers and MATLAB IVI drivers can be created from
VXIplug&play and IVI drivers, respectively, using the MATLAB Instrument Driver
Editor or the makemid function.

Test Structure

The driver test structure is composed of setup information and test steps.

Setup

When setting up or initializing the test, you provide a test name and description, identify
the driver to test, define the interface to the instrument, and set the test preferences.
This information remains unchanged throughout the execution of the test, and applies to
every step.

Test Steps

The executable portion of the test is divided into any number of test steps. A test step can
perform one of four verifications:

• Set property — Verify that the set command or set code of a single device object or
group object property in the driver does not error, and that the driver supports the
defined range for the property value. You can use one value or all supported values
for the property. You may also use invalid property values to check the driver's
response.

• Get property — Verify the reading of a single device object or group object property
from the driver.

• Properties sweep — Verify several properties in a single step.
• Function — Verify the execution of a driver function.

After configuring your test steps, you can execute the steps individually, or run a
complete test that executes all the steps in the test.

Starting

You start the MATLAB Instrument Driver Testing Tool by typing the MATLAB
command

midtest

 Instrument Driver Testing Tool Overview

20-3

This opens the tool without any test file loaded.

You may specify a test file (usually created in an earlier session of the tool) when you
start the tool so that it opens up with a test file already loaded.

midtest('MyDriverTestfile')

Note MIDTEST and the Instrument Driver Testing Tool are unable to open MDDs with
non-ascii characters either in their name or path on Mac platforms.

Example

For the examples in this chapter, you will create a test for the Tektronix TDS210
oscilloscope driver that you created in “MATLAB Instrument Driver Editor Overview” on
page 19-2.

You will create each kind of step in your test: set property, get property, sweep
properties, and function.

20 Using the Instrument Driver Testing Tool

20-4

Setting Up Your Test

In this section...
“Test File” on page 20-5
“Providing a Name and Description” on page 20-5
“Specifying the Driver” on page 20-5
“Specifying an Interface” on page 20-6
“Setting Test Preferences” on page 20-6
“Setting Up a Driver Test” on page 20-7

Test File

You can specify a test file to load when you start midtest, open a test file after the
MATLAB Instrument Driver Testing Tool is already up, or create a new test. You may
find it convenient to keep the driver and test file together in the same directory. For easy
use in the MATLAB Command Window, you can put that directory in the MATLAB path
with the addpath command.

Note MIDTEST and the Instrument Driver Testing Tool are unable to open MDDs with
non-ascii characters either in their name or path on Mac platforms.

Providing a Name and Description

The Name field allows a one-line text definition for your test. This name appears in the
header of the test results in the Output Window.

The Description field allows a full definition of the text with as much descriptive text as
you need.

Specifying the Driver

In the Driver text field, you specify the driver to be tested. This is any MATLAB
instrument driver, usually with the .mdd extension. Enter the full path to the driver, or
click Browse to navigate to the driver's directory.

 Setting Up Your Test

20-5

Specifying an Interface

You specify the interface with the instrument for the testing of the driver. The
instrument object type may be GPIB, VISA, TCPIP, UDP, or serial port. Depending on
the type you choose, the New Object Creation dialog box prompts you for further
configuration information.

The tool then creates a device object based on interface and driver.

Setting Test Preferences

The Test Preferences dialog box allows you to set certain behaviors of the tool when
running a test.

Run Mode

This specifies whether the test runs all the steps or only one step in the test.

Fail Action

This specifies what happens if a step within the test fails. The test may stop after the
failed step or continue, with or without resetting the instrument.

No-error String

This field specifies the expected string returned from the instrument when there is no
error. If you indicate that a step passes when no error is returned from the instrument,
the tool compares the string returned from the instrument via the geterror function, to
the string given here in the Preferences dialog box. If the strings match, then the tool
assumes there is no error from the instrument.

Number of Values to Test

A double-precision property can be tested using all supported values. You can request
this when testing it as a single step, or the tool does it automatically when the property
is tested as part of a property sweep step. This field specifies how many values are tested
for such a property.

The number of values includes the defined minimum and maximum for the property, and
integer values equally spaced between these limits.

20 Using the Instrument Driver Testing Tool

20-6

If your property requires noninteger values for testing, then create a separate test step
for that property instead of including it in a sweep.

Setting Up a Driver Test

This example identifies the driver to be tested, and defines global setup information for
the test. You will be testing the driver created in the examples of “MATLAB Instrument
Driver Editor Overview” on page 19-2.

1 Open the MATLAB Instrument Driver Testing Tool from the command line with the
command midtest.

2 In the Name text field, enter TDS 210 Driver Sample Test.
3 In the Description text field, enter A test to check some of the

properties and functions of the TDS 210 oscilloscope driver.
4 In the Driver field, enter the name of the driver you created in “MATLAB

Instrument Driver Editor Overview” on page 19-2. The text field will display the
whole pathname, with the driver file tektronix_tds210_ex.mdd.

 Setting Up Your Test

20-7

5 Click the Create button to create an instrument interface.

6 In the New Object Creation dialog box,

a Select your Instrument object type, Vendor, Board index, and Primary
address of your instrument.

The example illustrations in this chapter use a GPIB board with index 0 and the
instrument at address 4. Your configuration may be different.

b Click OK.
7 Click the File menu and select Test Preferences.
8 In the Test Preferences dialog box,

a For Select run mode, click Run all steps.
b For Select fail action, click Continue test.
c For Message returned from instrument when no error occurred, enter

"". (This is an empty string in double quotes.)
d For Number of values to test for double properties, enter 5.
e Click OK.

20 Using the Instrument Driver Testing Tool

20-8

The MATLAB Instrument Driver Testing Tool now displays all your setup
information.

 Setting Up Your Test

20-9

9 Click File and select Save. Enter tektronix_tds210_ex_test as the filename for
your test. The tool automatically adds the .xml file extension.

20 Using the Instrument Driver Testing Tool

20-10

Defining Test Steps
In this section...
“Test Step: Set Property” on page 20-11
“Test Step: Get Property” on page 20-14
“Test Step: Properties Sweep” on page 20-17
“Test Step: Function” on page 20-20

Test Step: Set Property

You use a set property test step to verify a driver's set code or set command for a
property. You provide a name for the step, select the driver property to test and the
values to test it with, and define the conditions for the step's passing.
Settings Dscription
Name You provide a name for each test step. The name appears in the

Test Explorer tree as well as in the results output.
Property to Test A set property step can test only one property. You choose the

property from the Property to Test list. Additional properties can be
tested with additional steps, or with a sweep step.

Object(s) to Test A property may be defined for the instrument or for a group object.
If you are testing a group object property, you select which object
you want tested in the Object(s) to Test list.

Define the Values to
Test

If the property is has enumerated values, you can select one of the
defined values, all of the supported values, or some other value. If
the property's value is a double-precision number, you can select a
value within its defined range, all supported values, or some other
value. For a double, you set the number of values tested for all
supported values in the Preferences dialog box (see “Number of
Values to Test” on page 20-6).

 Defining Test Steps

20-11

Settings Dscription
Select When this
Step Passes

The step passes when one or both of two conditions are met:

• If no instrument or MATLAB error occurs as a result of
attempting to set the property with its test value

• If a query of the property after it is set returns a specified value

If you select more than one of these conditions, then both conditions
must be met for the step to pass. If no boxes are selected, the test
will pass.

Creating a Test Step: Set Property

1 Click the Set Property option in the Test Steps list box.
2 Click the Add button.
3 In the Name field, enter Set Display Contrast.
4 In the Property to test list, select DisplayContrast.
5 For Define the value(s) to test, select All supported values.
6 For Select when this step passes,

• Select If no MATLAB software or instrument error occurs.
• Select If current value matches configured value.

20 Using the Instrument Driver Testing Tool

20-12

7 Click File and select Save.

Running a Test Step to Set a Property

You can run an individual test step to verify its behavior:

1 Select Set Display Contrast in the Test Explorer tree.
2 With the cursor on the selected name, right-click to bring up the context menu.
3 In the context menu, select Run this step only.

You may want to repeat this step as you observe the oscilloscope display. The test sets
the display contrast to five different values: lowest acceptable value (1%), highest

 Defining Test Steps

20-13

acceptable value (100%), and three approximately equally spaced integer values between
these limits.

The tool automatically displays the Output Window with the test results.

This test step passed because, for each of the five display contrast settings, the tool read
back a value that was equal to the configured value.

Test Step: Get Property

You use a get property test step to verify a driver's ability to read a property. You provide
a name for the step, select the driver property to test, and define the conditions for the
step's passing.

Settings

The settings for the get property step are the same as for a “Test Step: Set Property” on
page 20-11, except that instead of providing a value to write, you can provide an output
argument variable.

20 Using the Instrument Driver Testing Tool

20-14

Output Argument

The test step assigns the optional output argument variable the value that results from
reading the property. The variable is available for “Exporting Results” on page 20-28,
after the test step has executed.

Creating a Test Step: Get Property

1 Click the Get Property option in the Test Step field.
2 Click the Add button.
3 In the Name field, enter Getting Display Contrast.
4 In the Property to test list, select DisplayContrast.
5 In the Output argument field, enter DispContr.
6 For Select when this step passes,

• Unselect the box for If no MATLAB software or instrument error occurs.
• Select If property value is, and enter a value of 80.

This value is chosen to generate a failure. If this step follows the previous step in
the example, the display contrast is still set at 100. If this step is run by itself,
the display contrast is set to 50 by the *RST command that is executed as part of
your connect code for the driver.

 Defining Test Steps

20-15

7 Click File and select Save.

Running a Test Step to Get a Property

You run the individual test step to verify its behavior.

1 Select Get Display Contrast in the Test Explorer tree.
2 With the cursor on the selected name, click the right mouse button to bring up the

context menu.
3 In the context menu, select Run this step only.

Note that the test fails, reading a value of 50 while expecting a value of 80.

20 Using the Instrument Driver Testing Tool

20-16

Test Step: Properties Sweep

A properties sweep step allows you to test several properties in a single step. All selected
properties are tested for all supported values. (In the case of properties with double-
precision values, you determine the “Number of Values to Test” on page 20-6, in the Test
Preferences dialog box.)

Settings

The fields for name and passing conditions are the same as other types of test steps. The
sweep step also requires that you select which properties and groups to test.
Select the Properties to Test

You may select any or all of the properties for testing in a sweep step. You may find it
convenient to create several sweep steps for testing related groups properties together.

 Defining Test Steps

20-17

Select the Group Object to Use on Sweep

For those properties defined for group objects, you can select a particular group object to
test, or all the group objects. You can also define different sweep steps for different group
objects.

Creating a Sweep Step to Test All Properties

1 Click the Properties Sweep option in the Test Step field.
2 Click the Add button.
3 In the Name field, enter All Properties Sweep.
4 For Select the properties to test, click Select All.
5 In the Select the group object(s) field,

• For the Measurement group, select All Measurement group objects.
• For the Trigger group, select All Trigger group objects.

6 For Select when this step passes,

• Select If no MATLAB software or instrument error occurs, and
• Select If current value matches configured value

7 Click File and select Save.

20 Using the Instrument Driver Testing Tool

20-18

Running a Sweep Step to Test All Properties

You run the sweep test step to verify its behavior.

1 Select All Properties Sweep in the Test Explorer tree.
2 With the cursor on the selected name, click the right mouse button to bring up the

context menu.
3 In the context menu, select Run this step only.

The Output Window is updated as each property in the sweep is tested. Note that the
entire sweep is only one step in the overall test.

 Defining Test Steps

20-19

Test Step: Function

A function test step sends a function call to the instrument. You select the function
called, the input data and output arguments (if required), and the conditions for passing.

Settings

Name

You provide a name for each test step. The name appears in the Test Explorer tree as
well as in the results output.

20 Using the Instrument Driver Testing Tool

20-20

Function to test

A function step can test only one function. You choose the function from the Function to
test list. Additional functions can be tested with additional steps.
Function definition

The tool displays below the selected function what the call command for the function
looks like. This helps you when deciding what input and output arguments to supply.
Input argument(s) and Output argument(s)

You provide input arguments as a comma-separated list of data, strings, character
vectors, or whatever the function is expecting.

You provide output argument variable for any data returned from the function. The
output arguments can be used to determine if the test step passes, or for “Exporting
Results” on page 20-28 after the test step has executed.
Select when this step passes

The step passes when any of three conditions is met:

• If no instrument or MATLAB software error occurs as a result of attempting to
execute the function

• If the returned output arguments match expected values
• If the output of a specified function is true

If you select more than one of these conditions, then all selected conditions must be met
for the step to pass. If no boxes are selected, the test will pass.

Creating a Test Step: Function

1 Click the Function option in the Test Step field.
2 Click the Add button.
3 In the Name field, enter Config Waveform.
4 In the Function to test list, select configureWaveform.
5 In the Input argument(s) field, type 'CH1', 1, 3000.
6 In the Output argument(s) field, type Channel, StartAdr, StopAdr.
7 For Select when this step passes,

• Select If no MATLAB software or instrument error occurs.

 Defining Test Steps

20-21

• Select If output arguments are, and enter in its field 'CH1', 1, 2500.
• Unselect If output of function ... is true.

8 Click File and select Save.

Note that you set the input argument for the stop address to 3000, but you set the
expected value for its output argument, StopAdr, to 2500. This is because the maximum
address of the oscilloscope is 2500. If you attempt to exceed that value, the oscilloscope
address is set to the maximum.

Running a Test Step to Test a Function

You can run an individual test step to verify its behavior

1 Select Config Waveform in the Test Explorer tree.
2 With the cursor on the selected name, click the right mouse button to bring up the

context menu.
3 In the context menu, select Run this step only.

20 Using the Instrument Driver Testing Tool

20-22

 Defining Test Steps

20-23

Saving Your Test
In this section...
“Saving the Test as MATLAB Code” on page 20-24
“Saving the Test as a Driver Function” on page 20-24

Saving the Test as MATLAB Code
In the preceding examples of this chapter, you have been saving the test file after
creating each step. The test file is saved in XML format. Here are some other save
options.

You save the test file as MATLAB code by clicking the File menu and selecting Save
Test as M-Code.

You can execute the test by calling this file from the MATLAB Command Window.

For example, you can save the test file you created in this chapter as
tektronix_tds210_ex_test.m. Then you execute the test from the MATLAB
Command Window by typing

tektronix_tds210_ex_test

The test results are displayed in the MATLAB Command Window.

Saving the Test as a Driver Function
You save your test as a driver function by clicking the File menu and selecting Save
Test as Driver Function.

When you enter a name for the driver test function, the invoke command at the bottom
of the dialog box reflects that name. You use that invoke command to execute the driver
function from the MATLAB Command Window or in a file.

20 Using the Instrument Driver Testing Tool

20-24

Creating a Driver Test Function

1 Click the File menu and select Save Test as Driver Function.
2 Enter drivertest in the Specify the driver function name field.
3 Click OK.

A function called drivertest is created and saved as part of the instrument driver file.
You can open the driver file in the MATLAB Instrument Driver Editor tool (midedit) to
verify that the drivertest function is included.

Calling a Driver Test Function from the MATLAB Command Window

Now that the test function is included in the driver, you access it with the invoke
command from MATLAB.

In the MATLAB Command Window,

1 Create an interface object.

g = gpib('cec',0,4)
2 Create a device object, specifying the driver with the drivertest function saved in

it.

obj = icdevice('tektronix_tds210_ex.mdd',g)
3 Connect to the device.

connect(obj)
4 Execute the driver test.

out = invoke(obj, 'drivertest')
5 When the test is complete, disconnect from the instrument and delete the objects.

disconnect(obj)
delete ([g obj])

 Saving Your Test

20-25

Testing and Results
In this section...
“Running All Steps” on page 20-26
“Partial Testing” on page 20-28
“Exporting Results” on page 20-28
“Saving Results” on page 20-29

Running All Steps

So far in this chapter, you have only run individual test steps after each was created.

When you run the entire test, all the test steps run in the order listed in the Test
Explorer tree. Using the mouse, you may drag the nodes of the tree to alter their
sequence.

The Output Window displays the results of each step, along with a final result of the
complete test.

Running a Complete Test

1 Select Get Display Contrast in the Test Explorer tree.
2 In the Select when this step passes field, change the If property value is entry

from 80 to 100.

Earlier you entered a value of 80 to illustrate what a failure looks like. The display
contrast is left at 100 from the Set Display Contrast test step, so that is what
you will test for in the next step.

3 Click File and select Save.
4 Click the green arrow button to start a test run.

20 Using the Instrument Driver Testing Tool

20-26

 Testing and Results

20-27

Partial Testing

Using the context menu in the Test Explorer tree, you can run a partial test of either
an individual test step, or from the chosen test step through the end of the test.

Exporting Results

You can export the test results to many locations:

• MATLAB workspace
• MATLAB figure window
• MAT-file
• MATLAB Variables editor

The results you can export are those assigned to output variables in the settings for a
test step.

Exporting Test Results to the MATLAB Workspace

1 Click the File menu and select Export Test Results.
2 In the Test Results Exporter dialog box, select MATLAB Workspace as the Data

destination.

By default, all the variables are selected. You may unselect any.
3 Click the Export button.

The variables are now available in the MATLAB workspace, with values that were
established by the test run.

20 Using the Instrument Driver Testing Tool

20-28

Saving Results

You save your test results in an HTML file by clicking the File menu and selecting Save
Test Results. The format of the results in this file reflects their appearance in the tester
tool's Output Window.

 Testing and Results

20-29

Instrument Control Toolbox
Troubleshooting

• “How to Use This Troubleshooting Guide” on page 21-2
• “Is My Hardware Supported?” on page 21-3
• “Troubleshooting SPI Interface” on page 21-5
• “Troubleshooting I2C Interface” on page 21-10
• “Troubleshooting MODBUS Interface” on page 21-15
• “Troubleshooting Bluetooth Interface” on page 21-18
• “Troubleshooting Serial Port Interface” on page 21-26
• “Troubleshooting GPIB Interface” on page 21-31
• “Troubleshooting TCP/IP Interface” on page 21-37
• “Troubleshooting UDP Interface” on page 21-40
• “Troubleshooting IVI, VISA, and the Quick-Control Interfaces” on page 21-43
• “Hardware Support Packages” on page 21-51
• “Deploying Standalone Applications with Instrument Control Toolbox” on page 21-53
• “Contact MathWorks and Use the instrsupport Function” on page 21-56

21

How to Use This Troubleshooting Guide
If you have trouble connecting to or communicating with an instrument, try the
suggestions in this guide.

The first thing to check is that your instrument is supported with the toolbox. See “Is My
Hardware Supported?” on page 21-3 for information about supported interfaces and
supported hardware.

For connection and communication issues using a specific interface, see the section about
that interface. For example, if you are having trouble using an instrument over the
Bluetooth interface, refer to the Bluetooth section. Each interface section covers platform
support, interface requirements, and troubleshooting tips and procedures for that
interface.

If you are using VISA with another interface, try reading the sections for both interfaces.
For example, if you are using VISA with UDP, try reading the sections on both VISA
(“IVI, VISA, and the Quick Control Interfaces” topic) and UDP.

If you are having trouble with deployment or use of the MATLAB Compiler™, see
“Deploying Standalone Applications with Instrument Control Toolbox” on page 21-53.

If you need to contact MathWorks Technical Support, read “Contact MathWorks and Use
the instrsupport Function” on page 21-56 first. The instrsupport function runs
diagnostics and provides useful information that may help solve your problem.

21 Instrument Control Toolbox Troubleshooting

21-2

Is My Hardware Supported?
In this section...
“Supported Interfaces” on page 21-3
“Supported Hardware” on page 21-4

Supported Interfaces

The Instrument Control Toolbox supports the use of instruments and communication via
the following interfaces. The table lists the interface support by platform. Notes after the
table contain more specific information.
Feature 64-bit MATLAB on

Windows
64-bit MATLAB on
Mac OS

64-bit MATLAB on
Linux

Serial supported supported supported
TCP/IP supported supported supported
UDP supported supported supported
VISA 3 supported 1 supported on one

vendor 1, 3
supported 1

GPIB 4 supported 1 supported 1

I2C 5 supported 1 supported 1 supported 1

SPI 5 supported 1 supported 1 supported 1

Bluetooth 6 supported supported
MODBUS supported supported supported
Quick-Control
Oscilloscope, Quick-
Control Function
Generator, Quick-
Control RF Signal
Generator

supported 2 supported 2 supported 2

MATLAB
Instrument Drivers

supported supported supported

 Is My Hardware Supported?

21-3

Feature 64-bit MATLAB on
Windows

64-bit MATLAB on
Mac OS

64-bit MATLAB on
Linux

MATLAB
Instrument Drivers
made using IVI-C
drivers and
Instrument
Wrappers for IVI-C
drivers

supported 1

Table Notes

1. Dependent on support by third-party vendor driver for the hardware on this platform.

2. Dependent on third-party vendor support of platform when using an IVI-driver with
Quick-Control Oscilloscope or Quick-Control Function Generator.

3. Requires Agilent, National Instruments, Tektronix, or TAMS VISA compliant with
VISA specification 5.0 or higher for any platform. Only National Instruments VISA is
supported on macOS. The other vendors’ VISA support does not include macOS.

4. Requires Keysight (formerly Agilent), ICS Electronics, Measurement Computing
(MCC), ADLINK Technology, or National Instruments hardware and driver.

5. Requires Aardvark or National Instruments hardware and driver.

6. Bluetooth Serial Port Profile only.

Supported Hardware

See http://www.mathworks.com/hardware-support/instrument-control-software.html for
a complete list of supported hardware.

21 Instrument Control Toolbox Troubleshooting

21-4

http://www.mathworks.com/hardware-support/instrument-control-software.html

Troubleshooting SPI Interface

In this section...
“Supported Platforms” on page 21-5
“Adaptor Requirements” on page 21-6
“Configuration and Connection” on page 21-7

Serial Peripheral Interface (SPI) is a synchronous serial data link standard that operates
in full duplex mode. It is commonly used in the test and measurement field. Common
uses include communicating with micro controllers, EEPROMs, A2D devices, embedded
controllers, etc.

Instrument Control Toolbox SPI support lets you open connections with individual chips
and to read and write over the connections to individual chips using an Aardvark or
NI-845x host adaptor. The primary uses for the spi interface involve the write, read,
and writeAndRead functions for synchronously reading and writing binary data.

Supported Platforms

You need to have either a Total Phase Aardvark host adaptor or an NI-845x adaptor
board installed to use the spi interface.

The SPI interface is supported on these platforms when used with the Aardvark host
adaptor:

• Linux — Red Hat Enterprise Linux 4 and 5 with kernel 2.6, and possibly SUSE and
Ubuntu distributions.

• macOS 64-bit — Intel versions of macOS 10.5 Leopard, 10.6 Snow Leopard, 10.7 Lion,
and 10.8 Mountain Lion.

• Microsoft Windows 64-bit

The SPI interface is supported on these platforms when used with the NI-845x host
adaptor:

• Microsoft Windows 64-bit

 Troubleshooting SPI Interface

21-5

Adaptor Requirements

You need either a Total Phase Aardvark host adaptor or an NI-845x adaptor board
installed to use the spi interface. The following sections describe requirements for each
option.

Aardvark-specific Requirements

To use the SPI interface with the Aardvark adaptor, download the Hardware Support
Package to obtain the latest driver, if you do not already have the driver installed. If you
already have the latest driver installed, you do not need to download this Support
Package.

If you do not have the Aardvark driver installed, see “Install the Total Phase Aardvark
I2C/SPI Interface Support Package” on page 15-14 to install it.

Install the Aardvark Software API and Shared Library appropriate for your operating
system.

The aardvark.dll file that comes with the Total Phase Aardvark adaptor board must
be available in one of these locations for use on Windows platforms:

• Location where MATLAB was started from (bin folder)
• MATLAB current folder (PWD)
• Windows folder C:\winnt or C:\windows
• Folders listed in the path environment variable

For use on Linux platforms, the aardvark.so file that comes with the Total Phase
Aardvark adaptor board must be in your MATLAB path.

NI-845x-specific Requirements

To use the SPI interface with the NI-845x adaptor, download the hardware support
package to obtain the latest driver, if you do not already have the driver installed. If you
already have the latest driver installed, you do not need to download this support
package.

If you do not have the NI-845x driver installed, see “Install the NI-845x I2C/SPI
Interface Support Package” on page 15-12 to install it.

21 Instrument Control Toolbox Troubleshooting

21-6

Configuration and Connection
1 Make sure that you have the correct instrument driver installed for your device.

Refer to your device’s documentation and the vendor’s web site.
2 Make sure your device is supported in Instrument Control Toolbox. See “Is My

Hardware Supported?” on page 21-3.
3 You must have a Total Phase Aardvark host adaptor or an NI-845x adaptor board

installed to use the SPI interface. Install the appropriate support package if you
have not already. See “Adaptor Requirements” on page 21-6.

Make sure that your SPI adaptor board is plugged into the computer running
MATLAB. You can verify that you have one of the adaptors installed by using the
instrhwinfo function with the spi interface name.

If you do not see either aardvark or ni845x listed, you need to install one of the
support packages or install the driver directly from the vendor.

4 Make sure that Instrument Control Toolbox recognizes your device, by using the
instrhwinfo function with the spi interface name, and your adaptor name, either
aardvark or ni845x. For example:

 Troubleshooting SPI Interface

21-7

You will need the information displayed to create the spi object. If your device is not
displayed, check the previous steps.

5 Make sure you can create the spi object. You must provide three arguments to
create the object. BoardIndex and Port are both usually 0, and Vendor is either
'aardvark' or 'ni845x'. This example uses a SPI object called S that
communicates to an EEPROM chip. Create the object using the BoardIndex and
Port numbers, which are 0 in both cases.

% Vendor = aardvark
% BoardIndex = 0
% Port = 0

S = spi('aardvark', 0, 0);
6 If you do not get an error, the object was created successfully. To verify, you can look

at the object properties, using the name you assigned to the object, S in this case.

21 Instrument Control Toolbox Troubleshooting

21-8

7 Make sure you can connect to the device, using the connect function with the object
name.

connect(S);

If you do not get an error, the connection was made successfully. If you do get an
error, follow the steps in the error message and/or check the previous steps listed
here.

8 When you have connected, you can communicate with your device. See
“Transmitting Data Over the SPI Interface” on page 10-9 for an example of reading
and writing to a chip.

 Troubleshooting SPI Interface

21-9

Troubleshooting I2C Interface

In this section...
“Supported Platforms” on page 21-10
“Adaptor Requirements” on page 21-11
“Configuration and Connection” on page 21-12

I2C, or Inter-Integrated Circuit, is a chip-to-chip interface supporting two-wire
communication. Instrument Control Toolbox I2C support lets you open connections with
individual chips and to read and write over the connections to individual chips.

The Instrument Control Toolbox I2C interface lets you do chip-to-chip communication
using an Aardvark or NI-845x host adaptor. Some applications of this interface include
communication with SPD EEPROM and NVRAM chips, communication with SMBus
devices, controlling accelerometers, accessing low-speed DACs and ADCs, changing
settings on color monitors using the display data channel, changing sound volume in
intelligent speakers, reading hardware monitors and diagnostic sensors, visualizing data
sent from an I2C sensor, and turning on or off the power supply of system components.

Supported Platforms

You need to have either a Total Phase Aardvark host adaptor or an NI-845x adaptor
board installed to use the I2C interface.

The I2C interface is supported on these platforms when used with the Aardvark host
adaptor:

• Linux – The software works with Red Hat Enterprise Linux 4 and 5 with kernel 2.6.
It may also be successful with SuSE and Ubuntu distributions.

• macOS 64-bit – The software is supported on Intel versions of macOS 10.5 Leopard
and 10.6 Snow Leopard.

• Microsoft Windows 64-bit

The I2C interface is supported on these platforms when used with the NI-845x host
adaptor:

• Microsoft Windows 64-bit

21 Instrument Control Toolbox Troubleshooting

21-10

For updates to the list of currently supported platforms for MATLAB, see http://
www.mathworks.com/support/sysreq/current_release/.

Adaptor Requirements

You need to have either a Total Phase Aardvark host adaptor or an NI-845x adaptor
board installed to use the I2C interface. The following sections describe requirements for
each option.

Aardvark-specific Requirements

To use the I2C interface with the Aardvark adaptor, download the Hardware Support
Package to obtain the latest driver, if you do not already have the driver installed. If you
already have the latest driver installed, you do not need to download this Support
Package.

If you do not have the Aardvark driver installed, see “Install the Total Phase Aardvark
I2C/SPI Interface Support Package” on page 15-14 to install it.

Install the Aardvark Software API and Shared Library appropriate for your operating
system.

The aardvark.dll file that comes with the Total Phase Aardvark adaptor board must
be available in one of these locations for use on Windows platforms:

• Location where MATLAB was started from (bin folder)
• MATLAB current folder (PWD)
• Windows folder C:\winnt or C:\windows
• Folders listed in the path environment variable

For use on Linux platforms, the aardvark.so file that comes with the Total Phase
Aardvark adaptor board must be in your MATLAB path.

NI-845x-specific Requirements

To use the I2C interface with the NI-845x adaptor, download the hardware support
package to obtain the latest driver, if you do not already have the driver installed. If you
already have the latest driver installed, you do not need to download this support
package.

 Troubleshooting I2C Interface

21-11

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

If you do not have the NI-845x driver installed, see “Install the NI-845x I2C/SPI
Interface Support Package” on page 15-12 to install it.

Configuration and Connection
1 Make sure that you have the correct instrument driver installed for your device.

Refer to your device’s documentation and the vendor’s web site.
2 Make sure your device is supported in Instrument Control Toolbox. See “Is My

Hardware Supported?” on page 21-3.
3 You must have a Total Phase Aardvark host adaptor or an NI-845x adaptor board

installed to use the i2c interface. Install the appropriate support package if you
have not already. See “Adaptor Requirements” on page 21-11.

Make sure that your I2C adaptor board is plugged into the computer running
MATLAB. You can verify that you have one of the adaptors installed by using the
instrhwinfo function with the i2c interface name.

If you do not see either aardvark or ni845x listed, you need to install one of the
support packages or install the driver directly from the vendor.

4 Make sure that Instrument Control Toolbox recognizes your device, by using the
instrhwinfo function with the i2c interface name, and your adaptor name, either
aardvark or ni845x. For example:

instrhwinfo('i2c', 'Aardvark')

ans =

 AdaptorDllName: [1x127 char]
 AdaptorDllVersion: 'Version 3.0.0'
 AdaptorName: 'aardvark'
 InstalledBoardIds: 0
 ObjectConstructorName: 'i2c('aardvark', BoardIndex, RemoteAddress);'

21 Instrument Control Toolbox Troubleshooting

21-12

 VendorDllName: 'aardvark.dll'
 VendorDriverDescription: 'Total Phase I2C Driver'

You will need the information displayed to create the i2c object. If your device is not
displayed, check the previous steps.

5 Make sure you can create the i2c object. You must provide three arguments to
create the object. BoardIndex is usually 0, and Vendor is either aardvark or
ni845x. The RemoteAddress is specific to your device. Read the documentation of
the chip in order to know what the remote address is. For example, in this case we
create an object to communicate with an eeprom chip at remote address 50h:

% Vendor = aardvark
% BoardIndex = 0
% RemoteAddress = 50

eeprom = i2c('aardvark', 0, '50h');

Tip You can also see what the remote address of the chip is by scanning for
instruments in the Test & Measurement Tool. In the tool, right-click the I2C node
and select Scan for I2C adaptors. Any chips found by the scan are listed in the
hardware tree. The listing includes the remote address of the chip.

6 If you do not get an error, the object was created successfully. To verify, you can look
at the object properties, using the name you assigned to the object, eeprom in this
case.

 Troubleshooting I2C Interface

21-13

7 Make sure you can connect to the device, using the fopen function with the object
name.

fopen(eeprom);

If you do not get an error, the connection was made successfully. If you do get an
error, follow the steps in the error message and/or check the previous steps listed
here.

8 When you have connected, you can communicate with your device. See
“Transmitting Data Over the I2C Interface” on page 9-8 for an example of reading
and writing to a chip.

21 Instrument Control Toolbox Troubleshooting

21-14

Troubleshooting MODBUS Interface
In this section...
“Supported Platforms” on page 21-15
“Configuration and Connection” on page 21-16
“Other Troubleshooting Tips for MODBUS” on page 21-16

Instrument Control Toolbox supports the MODBUS interface over TCP/IP or Serial RTU.
You can use it to communicate with MODBUS servers, such as controlling a PLC
(Programmable Logic Controller), communicating with a temperature controller,
controlling a stepper motor, sending data to a DSP, reading bulk memory from a PAC
controller, or monitoring temperature and humidly on a MODBUS probe.

Using the MODBUS interface, you can do the following tasks:

• Read coils, inputs, input registers, and holding registers
• Write to coils and holding registers
• Perform a combination of one write operation and one read operation on groups of

holding registers in a single MODBUS transaction
• Modify the contents of a holding register using a mask write operation

Supported Platforms

Instrument Control Toolbox supports the MODBUS interface over TCP/IP or Serial RTU.
It is supported on the following platforms.

• Linux 64-bit
• macOS 64-bit
• Microsoft Windows 64-bit

Note The Instrument Control Toolbox MODBUS support works on the MATLAB
command line only. It is not available in the Test & Measurement Tool.

 Troubleshooting MODBUS Interface

21-15

Configuration and Connection
1 Make sure your device is supported in Instrument Control Toolbox. See “Is My

Hardware Supported?” on page 21-3.
2 If you are connecting to a local or remote device over MODBUS, make sure that the

device is powered on and available.
3 Instrument Control Toolbox can communicate over MODBUS using TCP/IP or Serial

RTU. If you are connecting via TCP/IP, you need to know the IP address or host
name of the MODBUS server. If you are connecting via Serial RTU, you need to
specify the Serial port the MODBUS server is connected to.

4 You can use the instrhwinfo function with the modbus interface name to see what
Serial ports are available to use.

instrhwinfo('modbus')

ans =

HardwareInfo with properties:

 SupportedProtocols: ["serialrtu" "tcpip"]
 LocalHost: [1×6 string]
 AvailableSerialPorts: ["COM1" "COM3"]

In this case, COM1 and COM3 are available.
5 Make sure you can create the modbus object. You must provide arguments to create

the object, whether you use serialrtu or tcpip. For examples of creating the
object and information about the required arguments, see “Create a MODBUS
Connection” on page 11-4.

When you create the modbus object, it connects you to the server or device. There is
no separate connection function required.

6 When you have connected, you can communicate with your device. See “Read
Temperature from a Remote Temperature Sensor” on page 11-16 for an example of
communicating with a device. See “Other Troubleshooting Tips for MODBUS” on
page 21-16 for tips about communication issues after initial connection.

Other Troubleshooting Tips for MODBUS

These tips may be relevant to your use of the MODBUS interface.

21 Instrument Control Toolbox Troubleshooting

21-16

Address Range

When specifying read and write addresses, the addresses must be in the following range:
0–65535.

Underlying Interface

You may encounter connection problems that are due to the underlying TCP/IP or Serial
Port connections, rather than being specific to the MODBUS interface. The
troubleshooting sections on “Troubleshooting TCP/IP Interface” on page 21-37 and
“Troubleshooting Serial Port Interface” on page 21-26 might provide tips that will help.

MODBUS Addresses

If you have trouble figuring out a MODBUS address, see the vendor documentation of
the device. For example, you may need to map a PLC register to the MODBUS address
for the register. The vendor documentation may help.

Some vendors include an extra digit in addresses that gets dropped. For example 43233
is really address 3233. Devices are usually represented by a four-digit address, and some
vendors use a 5th digit to represent the type of target, for example, coils. So you may
need to adjust an address to account for this if your device vendor does that.

The Instrument Control Toolbox MODBUS functions use 1-based addressing, like the
PLC shows addresses, not 0-based addressing, like MODBUS uses. The toolbox subtracts
1 from any addresses that are passed in via the address parameters in the read and write
functions.

 Troubleshooting MODBUS Interface

21-17

Troubleshooting Bluetooth Interface
In this section...
“Supported Platforms” on page 21-18
“Adaptor Requirements” on page 21-18
“Configuration and Connection” on page 21-20
“Other Troubleshooting Tips for Bluetooth” on page 21-23
“Troubleshoot Bluetooth Interface in Test & Measurement Tool” on page 21-24

The Instrument Control Toolbox Bluetooth interface lets you connect to devices over the
Bluetooth interface and to transmit and receive ASCII and binary data. Instrument
Control Toolbox supports the Bluetooth Serial Port Profile (SPP). You can identify any
SPP Bluetooth device and establish a two-way connection with that device.

Bluetooth is an open wireless technology standard for exchanging data over short
distances using short wavelength radio transmissions from fixed and mobile devices over
a packet-based protocol. Bluetooth provides a secure way to connect and exchange
information between devices such as Lego Mindstorm NXT robots, USB Bluetooth
adaptors (dongles), wireless sensors, mobile phones, faxes, laptops, computers, printers,
GPS receivers, etc.

Supported Platforms

The Bluetooth interface is supported on these platforms:

• macOS
• Microsoft Windows 64-bit

Adaptor Requirements

Instrument Control Toolbox supports the Bluetooth Serial Port Profile (SPP). You can
identify any SPP Bluetooth device and establish a two-way connection with that device.

Instrument Control Toolbox can communicate with Bluetooth devices via an adaptor. In
this example, a USB Bluetooth adaptor is plugged into the computer. It can identify
Bluetooth devices within range when queried. In order to communicate with
instruments, you need to perform a pairing in the adaptor software. Note that some

21 Instrument Control Toolbox Troubleshooting

21-18

devices, such as many laptop computers, do not need to use an adaptor since they have
one built in.

The following shows the software interface of an adaptor where two of the devices in
range have been paired – a smart phone with Bluetooth enabled, and a Lego Mindstorm
NXT robot. As you can see, the “friendly name” or display name of the smart phone is
simply iPhone and the name of the NXT robot is C3PO. In Instrument Control Toolbox
this friendly name is the Bluetooth RemoteName property.

On Windows 7 64-bit platforms, you can use only one Bluetooth adaptor at a time. If you
connect another adaptor, it will fail with a “Device Driver Installation Failed” error.

Some adaptors support multiple devices:

• The Bluetooth adaptor that comes with the LEGO Mindstorm kit (Abe – Model:
UB22S) supports connection to only one Bluetooth device at a time.

• IO Gear – Models GBU421 and GBU311 support communication with multiple
Bluetooth devices.

• Targus – Model ACB10US supports communication with multiple Bluetooth devices.
• Motorola – Model SYN1244B supports communication with multiple Bluetooth

devices.

 Troubleshooting Bluetooth Interface

21-19

• D-Link – Model DBT-120 supports communication with multiple Bluetooth devices.

If a Bluetooth adaptor is removed and a different one plugged in, all Bluetooth devices
have to be paired again with your PC. If the same adaptor is removed and plugged back
in, then you do not need to pair the devices again. If another adaptor of the same vendor
is plugged in, then the devices which had been cached when that adaptor was used are
seen in the cache.

Configuration and Connection
1 Make sure that you have the correct instrument driver installed for your device.

Refer to your device’s documentation and the vendor’s web site.
2 Make sure your device is supported in Instrument Control Toolbox. See “Is My

Hardware Supported?” on page 21-3.
3 Make sure that the Bluetooth service on the device is turned on.
4 Instrument Control Toolbox can communicate with Bluetooth devices via an adaptor,

either a USB Bluetooth adaptor that is plugged into the computer, or a built in
adaptor in the device. See “Adaptor Requirements” on page 21-18.

Make sure you have performed the pairing between the device and the computer
running MATLAB by using either a USB adaptor or a built-in adaptor.

5 You can verify that MATLAB can see your device by using the instrhwinfo
function with the Bluetooth interface name.

21 Instrument Control Toolbox Troubleshooting

21-20

In this example, instrhwinfo returned a cell array of five Bluetooth devices that
are in the range of the adaptor on the computer running Instrument Control
Toolbox. Then indexing into the RemoteNames property shows the five devices. You
can see that iPhone and C3PO appear in the list.

 Troubleshooting Bluetooth Interface

21-21

If a device shows an empty character vector for RemoteName, then that device does
not have a friendly name associated with it. To communicate with that device, you
need to use the RemoteID property.

The RemoteIDs display in the same order as the RemoteNames, so in this case, the
fourth ID in the list, '0021BA74F3DD', could be used for the device that shows no
RemoteName. You can use either RemoteName or RemoteID to communicate with a
device.

You can verify that MATLAB can see your device by using the instrhwinfo
function with the RemoteName property. In this example, C3PO is the remote name
of the NXT robot and is shown in the output.

instrhwinfo('Bluetooth','C3PO')

The Instrument Control Toolbox displays the device information.

21 Instrument Control Toolbox Troubleshooting

21-22

6 Make sure you can create the Bluetooth object. You must provide two arguments to
create the object, either the RemoteName or the RemoteID, and a channel number.
You can get the channel number from your device’s documentation or from looking at
the Bluetooth node in the Test & Measurement Tool. For example, create a
Bluetooth object called bt using channel 1 of the NXT device.

bt = Bluetooth('C3PO', 1);

If you do not get an error, the object was created successfully.
7 Make sure you can connect to the device, using the fopen function with the object

name.

fopen(bt)

If you do not get an error, the connection was made successfully. If you do get an
error, follow the steps in the error message and/or check the previous steps listed
here.

8 When you have connected, you can communicate with your device. See in
“Transmitting Data Over the Bluetooth Interface” on page 8-10 for an example of
communicating with a device. See “Other Troubleshooting Tips for Bluetooth” on
page 21-23 for tips about communication issues after initial connection.

Other Troubleshooting Tips for Bluetooth

These tips may be relevant to your use of this feature.

Remove or change adaptors

If a Bluetooth adaptor is removed and a different one plugged in, all Bluetooth devices
have to be paired again with your PC. If the same adaptor is removed and plugged back
in, then you do not need to pair the devices again. If another adaptor of the same vendor
is plugged in, then the devices which had been cached when that adaptor was used are
seen in the cache.

Use of instrhwinfo

If a Bluetooth device is already cached, but it is OFF when MATLAB is started, and if
instrhwinfo is called on this device, then ObjectConstructorName and Channel are
returned as a null character vector.

 Troubleshooting Bluetooth Interface

21-23

If a Bluetooth device is already cached and is ON when MATLAB is started, and it is
later switched OFF, if instrhwinfo is called on this device, then
ObjectConstructorName and Channel return the correct values.

Device out of range

If you create a Bluetooth object for any Bluetooth device and the connection is open, and
then the device goes out of range, the status of the object would still be open. When the
device comes into range again, you need to fclose the object and fopen it again for
communication to continue.

Change batteries on device

If you create a Bluetooth object, for a Lego Mindstorm NXT robot for example, and the
connection is open, and then the batteries of robot run out, then the status of the object
would still be open. If you then replace the batteries, you need to fclose the object and
fopen it again for communication to continue.

Restart device after scan in Test & Measurement Tool

When using the Bluetooth support in the Test & Measurement Tool, please note that you
may need to restart your device after you have done the scan. For any Lego Mindstorm
robot to be identified correctly, it has to be restarted after scanning. You may also have
to restart other Bluetooth devices after the scan as well.

Troubleshoot Bluetooth Interface in Test & Measurement Tool
To use the Bluetooth support in the Test & Measurement Tool, select the Bluetooth
node in the instrument tree and right-click Scan for bluetooth devices.

Note When using the Bluetooth support in the Test & Measurement Tool, please note
that you may need to restart your device after you have done the scan. For any Lego
Mindstorm robot to be identified correctly, it has to be restarted after scanning. You may
also have to restart other Bluetooth devices after the scan as well.

If you are having trouble using the Bluetooth interface in the Test & Measurement Tool,
try these steps.

• Check that the Bluetooth device supports the Serial Port Profile (SPP). We do not
support other Bluetooth profiles such as File Transfer Profile (FTP).

21 Instrument Control Toolbox Troubleshooting

21-24

• Make sure that the Bluetooth service on the device is turned on.
• Make sure that the Bluetooth device is paired with your computer.
• If you are using a Lego Mindstorm NXT brick, note that the NXT brick has to be

restarted after scanning for Bluetooth devices from the Test & Measurement Tool.
• If you still cannot connect to the Bluetooth device, try unplugging and replugging the

Bluetooth adaptor.

 Troubleshooting Bluetooth Interface

21-25

Troubleshooting Serial Port Interface

In this section...
“Supported Platforms” on page 21-26
“Adaptor Requirements” on page 21-27
“Configuration and Connection” on page 21-27
“Other Troubleshooting Tips for Serial Port” on page 21-29

Serial communication is a low-level protocol for communicating between two or more
devices. Normally, one device is a computer, and the other device can be another
computer or a:

• modem
• printer
• scientific instrument such as an oscilloscope or a function generator

The serial port sends and receives bytes of information in a serial fashion — 1 bit at a
time. These bytes are transmitted using either a binary format or a text (ASCII) format.

For many serial port applications, you can communicate with your instrument without
detailed knowledge of how the serial port works. Communication is established through a
serial port object, which you create in the MATLAB workspace.

Supported Platforms

The serial port interface is supported on these platforms:

• Linux 64-bit
• macOS 64-bit
• Microsoft Windows 64-bit

The serial port interface is supported on the same platforms as MATLAB. For updates to
the list of currently supported platforms, see http://www.mathworks.com/support/sysreq/
current_release/.

21 Instrument Control Toolbox Troubleshooting

21-26

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

Adaptor Requirements

Use RS-232 interface standard with the serial port communication. Over the years,
several serial port interface standards for connecting computers to peripheral devices
have been developed. These standards include RS-232, RS-422, and RS-485 — all of
which are supported by the serial port object. Of these, the most widely used standard is
RS-232, which stands for Recommended Standard number 232.

In this guide, it is assumed you are using the RS-232 standard.

You need to connect the two devices with a serial cable. For more information, see
“Connecting Two Devices with a Serial Cable” on page 6-3.

Serial ports consist of two signal types: data signals and control signals. To support these
signal types, as well as the signal ground, the RS-232 standard defines a 25-pin
connection. However, most PCs and UNIX platforms use a 9-pin connection. In fact, only
three pins are required for serial port communications: one for receiving data, one for
transmitting data, and one for the signal ground. For more information, see “Serial Port
Signals and Pin Assignments” on page 6-4.

Configuration and Connection
1 Make sure that you have the correct instrument driver installed for your device.

Refer to your device documentation and the vendor website.
2 Make sure that your device is supported in Instrument Control Toolbox. See “Is My

Hardware Supported?” on page 21-3.
3 Make sure that Instrument Control Toolbox recognizes your serial ports, by using

the instrhwinfo function with the serial interface name. For example:

instrhwinfo('serial')

ans =

 HardwareInfo with properties:

 AvailableSerialPorts: {'COM1'}
 JarFileVersion: 'Version 3.7'
 ObjectConstructorName: {'serial('COM1');'}
 SerialPorts: {'COM1'}

If your computer has more than one serial port, your output would look like this:

 Troubleshooting Serial Port Interface

21-27

info = instrhwinfo('serial')

info =

 HardwareInfo with properties:

 AvailableSerialPorts: {2x1 cell}
 JarFileVersion: 'Version 3.7'
 ObjectConstructorName: {2x1 cell}
 SerialPorts: {2x1 cell}

4 In this example the output listed two ports. List the available serial ports:
info.AvailableSerialPorts

ans =

 'COM1'
 'COM2'

Tip You can also use Windows device manager to see a list of available serial ports.
5 Make sure you can create your serial port object. You must provide one argument to

create the object, the name of an available port. For example, create a serial object
called s using port COM1.

s = serial('COM1');

If you do not get an error, the object was created successfully.
6 Make sure you can connect to the device, using the fopen function with the object

name.
fopen(s);

If you do not get an error, the connection was made successfully. If you do get an
error, follow the steps in the error message and/or check the previous steps listed
here.

7 When you have connected, you can communicate with your device. If you have
problems sending or receiving, you may need to configure communication settings
such as BaudRate, DataBits, Parity, StopBits, or Terminator. Make sure you
configure these communication parameters to match those of the connected device.

See “Writing and Reading Text Data” on page 6-27 and “Writing and Reading Binary
Data” on page 6-31 for communication examples.

21 Instrument Control Toolbox Troubleshooting

21-28

Other Troubleshooting Tips for Serial Port

Verify Port

Verify that the serial (COM) port is listed in Windows Control Panel > Device Manager >
Ports.

Sending and Receiving

If you have problems sending or receiving, you may need to configure communication
settings such as BaudRate, DataBits, Parity, StopBits, or Terminator. Make sure
you configure these communication parameters to match those of the connected device.

Buffer Settings

If you have problems sending or receiving, you may need to configure buffer settings.

The ReadAsyncMode property should always be set to continuous. Using manual
usually results in data loss.

InputBufferSize needs to be set to larger than the largest chunk of data the toolbox
will receive. If it is too small, data will be dropped. For continuous streams, try using a
bigger buffer size. The buffer should be large enough to hold at least one second of data.
The buffer should also be at least twice the read size (the number of bytes read by fread/
fscanf).

VISA

For serial communication, you can also use VISA with a VISA resource name, as defined
in a VISA vendor utility, such as Agilent Connection Expert.

Third-party Software

For troubleshooting serial port communication, you can also use a third-party serial
communication software, such as PuTTY or Tera Term, to isolate the issue.

Incorrect Data

When doing binary data communication with fread and fwrite, make sure the correct
data type – for example int16, uint16, double – is being used with fread and
fwrite. You should use the same data type as the instrument uses.

 Troubleshooting Serial Port Interface

21-29

If reading and writing data types other than uint8 or int8, make sure the ByteOrder
is correct.

21 Instrument Control Toolbox Troubleshooting

21-30

Troubleshooting GPIB Interface

In this section...
“Supported Platforms” on page 21-31
“Adaptor Requirements” on page 21-31
“Configuration and Connection” on page 21-33
“Other Troubleshooting Tips for GPIB” on page 21-35

GPIB is a standardized interface that allows you to connect and control multiple devices
from various vendors. GPIB is also referred to by its original name HP-IB, or by its IEEE
designation IEEE-488.

Some of the GPIB functionality is required for all GPIB devices, while other GPIB
functionality is optional. Refer to your device documentation for a complete list of its
GPIB capabilities and its command set.

Supported Platforms

The GPIB interface support is dependent on support by third-party vendor driver for the
hardware on the supported platforms.

The GPIB interface is supported on these platforms:

• Linux – The software works with Red Hat Enterprise Linux 4 and 5 with kernel 2.6.
It may also be successful with SuSE and Ubuntu distributions.

• Microsoft Windows 64-bit

Adaptor Requirements

Instrument hardware and driver

The GPIB interface support requires Keysight (formerly Agilent), ICS Electronics,
Measurement Computing (MCC), ADLINK Technology, or National Instruments adaptor
board and driver.

Bus and connector

 Troubleshooting GPIB Interface

21-31

You need a bus and connector to communicate with GPIB instruments. The GPIB bus is
a cable with two 24-pin connectors that allow you to connect multiple devices to each
other. For more information, see “Bus and Connector” on page 4-3.

GPIB devices

Each GPIB device must be some combination of a Talker, a Listener, or a Controller. A
Controller is typically a board that you install in your computer. Talkers and Listeners
are typically instruments such as oscilloscopes, function generators, multimeters, and so
on. Most modern instruments are both Talkers and Listeners. Each Controller is
identified by a unique board index number. Each Talker/Listener is identified by a
unique primary address ranging from 0 to 30, and by an optional secondary address,
which can be 0 or can range from 96 to 126. for more information, see “GPIB Devices” on
page 4-3.

GPIB data

There are two types of data that can be transferred over GPIB: instrument data and
interface messages:

• Instrument data — Instrument data consists of vendor-specific commands that
configure your instrument, return measurement results, and so on. For a complete list
of commands supported by your instrument, refer to its documentation.

• Interface messages — Interface messages are defined by the GPIB standard and
consist of commands that clear the GPIB bus, address devices, return self-test results,
and so on.

Data transfer consists of one byte (8 bits) sent in parallel. The data transfer rate
across the interface is limited to 1 megabyte per second. However, this data rate is
usually not achieved in practice, and is limited by the slowest device on the bus.

GPIB lines

GPIB consists of 24 lines, which are shared by all instruments connected to the bus. 16
lines are used for signals, while eight lines are for ground. The signal lines are divided
into these groups:

• Eight data lines
• Five interface management lines
• Three handshake lines

21 Instrument Control Toolbox Troubleshooting

21-32

For information on the types of lines and GPIB pin and signal assignments, see “GPIB
Lines” on page 4-4.

Configuration and Connection

1 Make sure that you have the correct instrument driver installed for your device.
Refer to your device’s documentation and the vendor’s web site.

2 Make sure your device is supported in Instrument Control Toolbox. See “Is My
Hardware Supported?” on page 21-3.

3 You must have a GPIB board and instrument installed to use the GPIB interface.

Make sure that your GPIB adaptor board is plugged into the computer running
MATLAB. You can verify that you have an adaptor board installed by using the
instrhwinfo function with the gpib interface name. Allowed adaptors include
agilent, isc, mcc, adlink, and ni.

instrhwinfo('gpib')

ans =
 InstalledAdaptors: {'mcc', 'agilent'}
 JarFileVersion: 'Version 14.3.0'

This example shows two installed vendors. The vendor name is for the board
manufacturer, not your instrument manufacturer. If you do not see any installed
vendors, you must install a board and its driver.

4 Make sure that Instrument Control Toolbox recognizes your device, by using the
instrhwinfo function with the gpib interface name, and your adaptor name. For
example:

instrhwinfo('gpib', 'agilent')

ans =
 AdaptorDllName: [1x91 char]
 AdaptorDllVersion: 'Version 14.3.0'
 AdaptorName: 'agilent'
 InstalledBoardIds: [8 32]
 ObjectConstructorName: {'gpib('agilent', 8, 6);'}
 VendorDllName: 'sicl32.dll'
 VendorDriverDescription: 'Agilent Technologies GPIB Driver'

 Troubleshooting GPIB Interface

21-33

InstalledBoardIds should list all installed boards. This is not the GPIB address
of the board. If your board is not listed, try to use the board manufacturer’s software
to use the board.

ObjectConstructorName should have one entry for every connected instrument. If
your instrument is not listed, make sure the instrument is on and configured for
GPIB communication.

5 Make sure you can create the gpib object. Each GPIB object is associated with one
controller and one instrument. You must provide three arguments to create the
object. Vendor is the adaptor board vendor. BoardIndex and PrimaryAddress are
the second and third arguments. For example, to create a GPIB object associated
with a National Instruments controller with board index 0, and an instrument with
primary address 1:

% Vendor = ni
% BoardIndex = 0
% PrimaryAddress = 1

g = gpib('ni',0,1);

Note You do not use the GPIB board primary address in the GPIB object constructor
syntax. You use the board index and the instrument address.

6 If you do not get an error, the object was created successfully. To verify, you can look
at the object properties, using the name you assigned to the object, g in this case.

disp(g)

GPIB Object Using NI Adaptor : GPIB0-1

Communication Address
 BoardIndex: 0
 PrimaryAddress: 1
 SecondaryAddress: 0

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0

21 Instrument Control Toolbox Troubleshooting

21-34

 ValuesReceived: 0
 ValuesSent: 0

7 Make sure you can connect to the device, using the fopen function with the object
name.

fopen(g);

If you do not get an error, the connection was made successfully. If you do get an
error, follow the steps in the error message and/or check the previous steps listed
here.

8 When you have connected, you can communicate with your device. See “Writing and
Reading Data” on page 4-18 for an example of reading and writing to a chip.

Other Troubleshooting Tips for GPIB

Verify in Vendor Utility

Verify correct operation in a vendor utility, such as Agilent Connection Expert or
National Instruments Measurement and Automation Explorer (MAX).

Both Agilent and NI installed

If you have both Agilent and NI GPIB drivers installed, you may get conflicts. Try
disabling the other vendor drivers and trying the vendor you want to use again.

EOIMode, EOSCharCode, and EOSMode

EOIMode is the default and should be left on most of the time. However, some
instruments might require EOIMode to be turned off. Use the correct parameter, such
as EOSCharCode or EOSMode when necessary.

VISA

You can almost always use the visa interface with a VISA GPIB resource name instead
of the gpib interface if you run into an issue. The only limitation of using VISA is that
you cannot use the spool function.

Incorrect command sent

A common problem in using the GPIB interface is that an incorrect command is sent to
the instrument. Try:

 Troubleshooting GPIB Interface

21-35

query(g,'*IDN?')

to verify communication with the instrument.

Most newer instruments recognize this command, since it is part of the GPIB standard.
You should also look at the instrument’s manual to see which commands it recognizes.

Byte Order

You can configure ByteOrder to be littleEndian or bigEndian. For GPIB,
ByteOrder refers to the order in which the bytes in a multi-byte data type values are
transmitted on the communication bus. You can use the swapbytes command to
troubleshoot issues with ByteOrder. You should configure ByteOrder to the
appropriate value for your instrument before performing a read or write operation. Refer
to your instrument documentation for information about the order in which it stores
bytes.

Incorrect Data

Make sure the correct data type – for example int16, uint16, double – is being used
with fread and fwrite. You should use the same data type as the instrument uses.

If reading and writing data types other than uint8 or int8, make sure the ByteOrder
is correct.

21 Instrument Control Toolbox Troubleshooting

21-36

Troubleshooting TCP/IP Interface
In this section...
“Supported Platforms” on page 21-37
“Configuration and Connection” on page 21-37
“Other Troubleshooting Tips for TCP/IP” on page 21-38

Transmission Control Protocol (TCP) is a transport protocol layered on top of the
Internet Protocol (IP) and is one of the most highly used networking protocols. With
Instrument Control Toolbox you can use raw socket communication and connect to
remote hosts to read and write data. For example, you could use it to acquire data from a
remote weather station, and plot the data.

Supported Platforms
TCP/IP is supported on these platforms:

• Linux 64-bit
• macOS 64-bit
• Microsoft Windows 64-bit

The TCP/IP interface is supported on the same platforms as MATLAB. For updates to
the list of currently supported platforms, see http://www.mathworks.com/support/sysreq/
current_release/.

Configuration and Connection
1 Make sure that you have the correct instrument driver installed for your device.

Refer to your device documentation and the vendor website.
2 Make sure that your device is supported in Instrument Control Toolbox. See “Is My

Hardware Supported?” on page 21-3.
3 Make sure that Instrument Control Toolbox recognizes your device, by using the

instrhwinfo function with the tcpip interface name. For example:

instrhwinfo('tcpip')

ans =

 Troubleshooting TCP/IP Interface

21-37

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

 HardwareInfo with properties:

 LocalHost: {6x1 cell}
 JarFileVersion: 'Version 3.7'

4 Make sure you can create your TCP/IP object. You create a TCP/IP object with the
tcpip function, which requires the name of the remote host as an input argument.
In most cases, you also need to specify the remote port value. If you do not specify
the remote port, then 80 is used.

Each TCP/IP object is associated with one instrument. For example, to create a
TCP/IP object for a Sony/Tektronix AWG520 Arbitrary Waveform Generator, you use
the remote host name of the instrument and the port number, which can be found in
the instrument’s documentation.

t = tcpip('sonytekawg.yourdomain.com',4000);
5 Make sure you can connect to the device, using the fopen function with the object

name.

fopen(t);

If you do not get an error, the connection was made successfully. The fopen function
errors if the socket connection cannot be made to the TCP/IP server. If fopen works,
the computer and port number are correct and a TCP/IP server is running on the
other end. If you do get an error, follow the steps in the error message and/or check
the previous steps listed here.

6 When you have connected, you can communicate with your device. If sending and
receiving does not work, you can check the following:

• Make sure the data is being sent in the format expected by the server.
• If you connect to a web server, you may need to send HTTP get or post

commands. You can also use the urlread or webread functions to communicate
with web servers.

• Many TCP/IP servers expect header information inside the TCP/IP packet.

See “TCP/IP Communication with a Remote Host” on page 7-7 for an example of
communication over TCP/IP.

Other Troubleshooting Tips for TCP/IP
VISA

21 Instrument Control Toolbox Troubleshooting

21-38

You can also use the visa interface with a VISA TCP/IP resource name instead of the
tcpip interface for TCP/IP communication with instruments.

Incorrect Data

Make sure the correct data type – for example int16, uint16, double – is being used
with fread and fwrite. You should use the same data type as the instrument uses.

If reading and writing data types other than uint8 or int8, make sure the ByteOrder
is correct.

 Troubleshooting TCP/IP Interface

21-39

Troubleshooting UDP Interface
In this section...
“Supported Platforms” on page 21-40
“Configuration and Connection” on page 21-40

User Datagram Protocol (UDP or UDP/IP) is a transport protocol layered on top of the
Internet Protocol (IP). UDP is a connectionless protocol. An application using UDP
prepares a packet and sends it to the receiver's address without first checking to see if
the receiver is ready to receive a packet. If the receiving end is not ready to receive a
packet, the packet is lost.

Supported Platforms

UDP is supported on these platforms:

• Linux 64-bit
• macOS 64-bit
• Microsoft Windows 64-bit

The UDP interface is supported on the same platforms as MATLAB. For updates to the
list of currently supported platforms, see http://www.mathworks.com/support/sysreq/
current_release/.

Configuration and Connection
1 Make sure that you have the correct instrument driver installed for your device.

Refer to your device documentation and the vendor website.
2 Make sure that your device is supported in Instrument Control Toolbox. See “Is My

Hardware Supported?” on page 21-3.
3 Make sure that Instrument Control Toolbox recognizes your device, by using the

instrhwinfo function with the udp interface name. For example:

instrhwinfo('udp')

ans =

 HardwareInfo with properties:

21 Instrument Control Toolbox Troubleshooting

21-40

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

 LocalHost: {6x1 cell}
 JarFileVersion: 'Version 3.7'

4 Make sure you can create your UDP object. You create a UDP object with the udp
function, which does not require the name of the remote host as an input argument.
However, if you are using the object to communicate with a specific instrument, you
should specify the remote host and the port number.

Although UDP is a stateless connection, opening a UDP object with an invalid host
name will generate an error. You can configure property values during object
creation, such as the LocalPort property if you will use the object to read data from
the instrument. For example, to create a UDP object associated with the remote host
127.0.0.1, remote port 4012, and local port 3533:

u = udp('127.0.0.1', 4012, 'LocalPort', 3533);

You can verify the object by looking at the object properties, using the name you
assigned to the object, u in this case.

disp(u)

UDP Object : UDP-127.0.0.1

Communication Settings
 RemotePort: 4012
 RemoteHost: 127.0.0.1
 Terminator: 'LF'

Communication State
 Status: closed
 RecordStatus: off

Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

5 Make sure you can connect to the remote host, using the fopen function with the
object name.

fopen(u);

 Troubleshooting UDP Interface

21-41

If the computer or host does not exist, you will get a warning. You can try to ping the
computer to see if it is responding:

!ping hostname
6 When you have connected, you can communicate with your device. If sending and

receiving does not work, you can check the following:

• Make sure the hostname/IP exists. Try !ping hostname.
• Make sure the RemotePort and LocalPort are correct. RemotePort is the port

that the other computer or application is listening to for UDP traffic. LocalPort
is the port on the computer that MATLAB is listening to for UDP traffic.

• Look at the setting of the DatagramTerminateMode property. The default
setting of on makes UDP behave differently than other interfaces. Try both
settings. You also may need to set other properties, such as buffer size. See
“Functions and Properties” on page 7-41 (ASCII) and “Functions and Properties”
on page 7-47 (Binary) for more information on properties and values.

• UDP is not a reliable protocol and packets can be dropped. You may need to try
sending or receiving multiple times.

See “Read and Write ASCII Data over UDP” on page 7-41 and “Read and Write
Binary Data over UDP” on page 7-47 for examples of communication over UDP and
information on using properties.

21 Instrument Control Toolbox Troubleshooting

21-42

Troubleshooting IVI, VISA, and the Quick-Control Interfaces
Virtual Instrument Software Architecture (VISA) is an industry standard defined by the
IVI foundation for communicating with instruments regardless of the interface.

The IVI standard defines an open driver architecture, a set of instrument classes, and
shared software components. With IVI you can use instruments interchangeability into
multiple systems using standardized code.

You can use the Quick-Control Oscilloscope for any oscilloscope that uses an underlying
IVI-C driver. You can use the Quick-Control Function Generator for any function
generator that uses an underlying IVI-C driver. You can use the Quick-Control RF Signal
Generator for any RF signal generator that uses an underlying IVI-C driver.

In this section...
“Supported Platforms” on page 21-43
“Adaptor Requirements” on page 21-43
“Configuration and Connection” on page 21-47
“VISA Supported Vendor and Resource Names” on page 21-49

Supported Platforms
VISA is supported on these platforms:

• Linux 64-bit
• macOS 64-bit
• Microsoft Windows 64-bit

IVI is supported on these platforms:

• Microsoft Windows 64-bit

The Quick Control interfaces are supported on these platforms:

• Microsoft Windows 64-bit

Adaptor Requirements
IVI-C

 Troubleshooting IVI, VISA, and the Quick-Control Interfaces

21-43

Instrument Control Toolbox software supports IVI-C drivers, with class-compliant and
instrument-specific functionality.

IVI class-compliant drivers support common functionality across a family of related
instruments. Use class-compliant drivers to access the basic functionality of an
instrument, and the ability to swap instruments without changing the code in your
application. With an IVI instrument-specific driver or interface, you can access the
unique functionality of the instrument. The instrument-specific driver generally does not
accommodate instrument substitution.

For IVI-C drivers, you can use IVI-C class drivers and IVI-C specific drivers. Device
objects you construct to call IVI-C class drivers offer interchangeability between similar
instruments, and work with all instruments consistent with that class driver. Device
objects you construct to call IVI-C specific drivers directly generally offer less
interchangeability, but provide access to the unique methods and properties of a specific
instrument.

Other things to note:

• IVI-COM is no longer supported, because of the removal of 32-bit MATLAB.
• Using an IVI driver with icdevice requires generating a MATLAB instrument

driver (MDD) with makemid or using a prebuilt MDD driver.
• The IVI Foundation maintains a registry of drivers sortable by instrument model and

driver type. See http://www.ivifoundation.org/registered_drivers/driver_registry.aspx.

Before you use IVI drivers in MATLAB, install:

• VISA
• IVI Shared components
• Required IVI drivers

IVI-C Wrappers

The IVI-C wrappers provide an interface to MATLAB for instruments running on IVI-C
class-compliant drivers.

To use the wrapper you must have the following software installed.

• Windows 64-bit
• VISA shared components

21 Instrument Control Toolbox Troubleshooting

21-44

http://www.ivifoundation.org/registered_drivers/driver_registry.aspx

• VISA
• National Instruments compliance package NICP 4.1 or higher
• Your instrument driver

Quick Control Oscilloscope

You can use the Quick-Control Oscilloscope for any oscilloscope that uses an underlying
IVI-C driver. However, you do not have to directly deal with the underlying driver. You
can also use it for Tektronix oscilloscopes.

To use the Quick-Control Oscilloscope for an IVI-C scope, you must have the following
software installed. Most components are installed by the Instrument Control Toolbox
Support Package for National Instruments VISA and ICP Interfaces. To install the
support package, see “Install the National Instruments VISA and ICP Interfaces Support
Package” on page 15-16.

• Windows 64-bit platforms
• VISA shared components (installed by the support package)
• VISA (installed by the support package)

Note, the examples use Agilent VISA, but you can use any version of VISA.
• National Instruments IVI compliance package NICP 4.1 or later (installed by the

support package)
• Your instrument’s device-specific driver. If you do not already have it, go to your

instrument vendor's website and download the IVI-C driver for your specific
instrument.

By default, the driver used is Tektronix ('tektronix'). If your instrument is not
supported by the default driver, specify a particular IVI-C Scope driver using the driver
property on the oscilloscope object.

Note As of release R2015a, most of these components are installed for you when you
install the National Instruments VISA and ICP Interfaces Support Package. See “Install
the National Instruments VISA and ICP Interfaces Support Package” on page 15-16.

Quick Control Function Generator

 Troubleshooting IVI, VISA, and the Quick-Control Interfaces

21-45

You can use the Quick-Control Function Generator for any function generator that uses
an underlying IVI-C driver. However, you do not have to directly deal with the
underlying driver.

To use the Quick-Control Function Generator for an IVI-C fgen, ensure the following
software is installed. Most components are installed by the Instrument Control Toolbox
Support Package for National Instruments VISA and ICP Interfaces. To install the
support package, see “Install the National Instruments VISA and ICP Interfaces Support
Package” on page 15-16.

• Windows 64-bit platforms
• VISA shared components (installed by the support package)
• VISA (installed by the support package)

Note, the examples use Agilent VISA, but you can use any vendor’s implementation of
VISA.

• National Instruments IVI compliance package NICP 4.1 or later (installed by the
support package)

• Your instrument’s device-specific driver. If you do not already have it, go to your
instrument vendor's website and download the IVI-C driver for your specific
instrument.

By default, the driver used is 'Agilent332x0_SCPI'. If your instrument is not
supported by the default driver, specify a particular IVI-C Function Generator driver
using the driver property on the fgen object.

Note As of release R2015a, most of these components are installed for you when you
install the National Instruments VISA and ICP Interfaces Support Package. See “Install
the National Instruments VISA and ICP Interfaces Support Package” on page 15-16.

Quick Control RF Signal Generator

You can use the Quick-Control RF Signal Generator for any RF signal generator that
uses an underlying IVI-C driver. However, you do not have to directly deal with the
underlying driver.

To use the Quick-Control RF Signal Generator for an IVI-C RF signal generator, ensure
the following software is installed. Most components are installed by the Instrument

21 Instrument Control Toolbox Troubleshooting

21-46

Control Toolbox Support Package for National Instruments VISA and ICP Interfaces, but
you can also install them separately. To install the support package, see “Install the
National Instruments VISA and ICP Interfaces Support Package” on page 15-16.

• Windows 64-bit platforms
• VISA shared components (installed by the support package)
• VISA (installed by the support package)

Note, the examples use Agilent VISA, but you can use any vendor’s implementation of
VISA.

• National Instruments IVI compliance package NICP 4.1 or later (installed by the
support package)

• The device-specific driver for your instrument. If you do not already have it, go to your
instrument vendor's website and download the IVI-C driver for your specific
instrument.

Note As of release R2015a, most of these components are installed for you when you
install the National Instruments VISA and ICP Interfaces Support Package. See “Install
the National Instruments VISA and ICP Interfaces Support Package” on page 15-16.

Configuration and Connection

1 Make sure that you have the correct instrument driver installed for your device.
Refer to your device documentation and the vendor website.

2 Make sure that your device is supported in Instrument Control Toolbox. See “Is My
Hardware Supported?” on page 21-3.

3 Make sure that Instrument Control Toolbox recognizes your device, by using the
instrhwinfo function with the visa interface name. For example:

instrhwinfo('visa')

ans =
 InstalledAdaptors: {'agilent'}
 JarFileVersion: 'Version 2.8.0'

The VISA library should be listed. If it is not, make sure it is installed and it is a
supported version.

 Troubleshooting IVI, VISA, and the Quick-Control Interfaces

21-47

You can also make sure your instrument is listed, by using instrhwinfo with the
adaptor and vendor name, then looking at the ObjectConstructorName field.

visainfo = instrhwinfo('visa', 'agilent')

visainfo.ObjectConstructorName

ans =
 'visa('agilent', 'ASRL1::INSTR');'
 'visa('agilent', 'TCPIP0::172.31.57.119::inst0::INSTR');'
 'visa('agilent', 'TCPIP0::hostname.net.com::inst0::INSTR');'

If the instrument is not listed, it is not configured properly in your vendor’s VISA
configuration utility. Each vendor has its own utility. See the table in “VISA
Supported Vendor and Resource Names” at the end of this topic for a list of the
vendor utilities.

4 You can also use instrhwinfo to find information on installed IVI drivers and
shared components. For example:

instrhwinfo ('ivi')

ans =
 LogicalNames: {'MainScope', 'FuncGen'}
 ProgramIDs: {'TekScope.TekScope','Agilent33250'}
 Modules: {'ag3325b', 'hpe363xa'}
ConfigurationServerVersion: '1.6.0.10124'
 MasterConfigurationStore: 'C:\Program Files\IVI\Data\
 IviConfigurationStore.xml'
 IVIRootPath: 'C:\Program Files\IVI\'

Modules refer to IVI-C drivers.

Logical names are associated with particular IVI drivers as defined in the IVI
Configuration Store, but they do not necessarily imply that the drivers are currently
installed. You can install drivers that do not have a LogicalName property set yet,
or drivers whose LogicalName was removed.

Alternatively, use the Test & Measurement Tool to view the installation of IVI
drivers and the setup of the IVI configuration store. Expand the Instrument
Drivers node and click IVI. Click the Software Modules tab. (For information on
the other IVI driver tabs and settings in the Test & Measurement Tool, see “IVI
Configuration Store” on page 14-15.)

21 Instrument Control Toolbox Troubleshooting

21-48

5 You can create an ivi object or a visa object to communicate with your instrument.
For instructions on creating an IVI object, constructing an IVI configuration store,
and configuring communication using an IVI-C class compliant interface, see
“Reading Waveforms Using the IVI-C Class Compliant Interface” on page 14-22.

You can create a VISA object to use with different instrument types. For example,
create a VISA-serial object connected to serial port COM1 using National Instruments
VISA interface.

v = visa('ni','ASRL1::INSTR');

If you do not get an error, the object was created successfully. If the resource name
does not exist, you will get an error. Check that the resource name is correct in the
vendor configuration utility. See the table in the next section.

6 Make sure you can connect to the remote host, using the fopen function with the
object name.

fopen(v);

If you do not get an error, the connection was made successfully.
7 When you have connected, you can communicate with your device. If you have

problems sending or receiving, you may need to configure communication settings. If
you are using VISA, check steps listed for the interface you are using, such as
TCP/IP, Serial, etc. Make sure you are using the correct instrument command. Look
in the instrument’s documentation to see what commands it recognizes. Verify that
communication works using the vendor utility.

VISA Supported Vendor and Resource Names

When you use instrhwinfo to find commands to configure the interface objects, you
must use valid vendor or resource names. The supported values for vendor are given
below in parentheses after the vendor name. These are their utilities.
Vendor Configuration Utility Testing Connection Debug Utlity
Agilent Technologies
VISA ('agilent')

Agilent Connection
Expert (ACE)

Tools > Interactive
IO

Tools > IO Monitor

National
Instruments VISA
('ni')

Measurement and
Automation Explorer
(MAX)

Tools > NI VISA >
VISA Interactive
Control

NI Spy (external
application)

 Troubleshooting IVI, VISA, and the Quick-Control Interfaces

21-49

Vendor Configuration Utility Testing Connection Debug Utlity
Tektronix VISA
('tek')

Open Choice
Instrument Manager

Open Choice Talk
Listener

Open Choice Call
Monitor

21 Instrument Control Toolbox Troubleshooting

21-50

Hardware Support Packages
The Instrument Control Toolbox includes support packages that allow the use of certain
classes of instruments. To use any of the instrument support outlined below, install the
appropriate support package. See the topics listed in the table for information about the
contents and installing that support package.
Support Package Contents and Installation
Ocean Optics
Spectrometers

Use to communicate with Ocean Optics USB spectrometers.
Acquire data from the spectrometer and control it, including
acquire a spectrum, set the integration time, and enable
dark current and nonlinear spectral corrections.

See “Install the Ocean Optics Spectrometers Support
Package” on page 15-4.

Aardvark I2C/SPI
Interface

Use the I2C or SPI interface with the Aardvark adaptor.

See “Install the Total Phase Aardvark I2C/SPI Interface
Support Package” on page 15-14.

NI-845x I2C/SPI Interface Use the I2C or SPI interface with the NI-845x adaptor.

See “Install the NI-845x I2C/SPI Interface Support Package”
on page 15-12.

NI-SCOPE Oscilloscopes Use to communicate with NI-SCOPE oscilloscopes. Acquire
waveform data from the oscilloscope and control it.

See “Install the NI-SCOPE Oscilloscopes Support Package”
on page 15-6.

NI-FGEN Function
Generators

Use to communicate with NI-FGEN function generators.
Control and configure the function generator, and perform
tasks such as generating sine waves.

See “Install the NI-FGEN Function Generators Support
Package” on page 15-7.

 Hardware Support Packages

21-51

Support Package Contents and Installation
NI-DCPower Power
Supplies

Use to communicate with NI-DCPower power supplies.
Control and take digital measurements from a power
supply, such as the NI PXI 4011 triple-output
programmable DC power supply.

See “Install the NI-DCPower Power Supplies Support
Package” on page 15-8.

NI-DMM Digital
Multimeters

Use to communicate with NI-DMM digital multimeters.
Control and take measurements from a digital multimeter,
such as measuring voltage or resistance.

See “Install the NI-DMM Digital Multimeters Support
Package” on page 15-10.

NI-Switch Hardware Use to communicate with NI-Switch instruments. For
example, control a relay box such as the NI PXI-2586 10-
channel relay switch.

See “Install the NI-Switch Hardware Support Package” on
page 15-15.

NI VISA and ICP
Interfaces

Use the Quick Control Oscilloscope and Quick Control
Function Generator interfaces to communicate with and
control oscilloscopes and function generators.

See “Install the National Instruments VISA and ICP
Interfaces Support Package” on page 15-16.

21 Instrument Control Toolbox Troubleshooting

21-52

Deploying Standalone Applications with Instrument Control
Toolbox

In this section...
“Tips for both interface based communication and driver-based communication” on page
21-53
“Tips for interface based communication” on page 21-53
“Tips for driver based communication” on page 21-53
“Hardware Support packages” on page 21-55

This topic contains tips for deploying standalone applications with MATLAB Compiler
(deploytool or mcc) and Instrument Control Toolbox. Refer to these tips when creating
standalone applications that use functionality from Instrument Control Toolbox.

Tips for both interface based communication and driver-based
communication
• Device identifiers/resource names should not be hard-coded, as instrument resource

names are likely to be different on other machines.
• A best practice is to use instrhwinfo and query the return output in your MATLAB

code that you intend to deploy.

Tips for interface based communication

For direct interface based communication using I2C, SPI, GPIB, and VISA, on the
deployment machine, install all required third-party drivers separately from the
deployed application.

Tips for driver based communication

In addition to your MATLAB code, your deployed standalone application package should
include files required by your application:

• Include MATLAB Instrument Driver (MDD file) in your standalone application
project from deploytool or by passing a -a flag to mcc when compiling your
MATLAB code.

 Deploying Standalone Applications with Instrument Control Toolbox

21-53

IVI-C

Include the following in your deployed standalone application package:

• MATLAB Instrument Driver (MDD file)
• For 64-bit applications, MATLAB prototype and thunk files
• For 32-bit applications, MATLAB prototype file

The location of generated prototype and thunk files can be obtained from the result of
executing:

sprintf('%s',[tempdir 'ICTDeploymentFiles'])

On the machine where you deploy your standalone application:

• All third-party drivers and dependencies need to be installed separately from the
deployed standalone application.

• To reduce runtime unknowns, install the same version of IVI-C driver on the
deployment system as used on the development system.

• To reduce runtime unknowns, install the same version of VISA driver libraries on the
deployment system as used on the development system.

Note To troubleshoot vendor driver installation issues, it is recommended that the
deployed application provide a way to simulate connection to the hardware by
instantiating the driver with 'optionstring', 'simulate=true' as arguments for
icdevice. This will help narrow down the root cause of deployment issues to vendor
driver installation issue, or hardware issues.

Quick Control Interfaces

If you are not using the default SCPI-based drivers for Quick Control Oscilloscope
('tektronix') and Quick Control Function Generator ('Agilent332x0_SCPI'), and
are instead using an IVI-C driver, include the following in your deployed standalone
application package:

• For 64-bit applications, MATLAB prototype and thunk files for IVIScope or IVIFGen
• For 32-bit applications, MATLAB prototype file for IVIScope or IVIFGen

21 Instrument Control Toolbox Troubleshooting

21-54

The location of generated prototype and thunk files can be obtained from the result of
executing:

sprintf('%s',[tempdir 'ICTDeploymentFiles'])

On the machine where you deploy your standalone application:

• If required, all third-party drivers and dependencies need to be installed separately
from the deployed standalone application.

• To reduce runtime unknowns, install the same version of IVI-C driver on the
deployment system as used on the development system.

• To reduce runtime unknowns, install the same version of VISA driver libraries on the
deployment system as used on the development system.

Generic MDD

For use with the generic MDD, include the following in your deployed standalone
application package:

• MATLAB Instrument Driver (MDD file)

If your MDD uses LOADLIBRARY to interface with a C shared library, include:

• For 64-bit applications, MATLAB prototype and thunk files for the C shared library
• For 32-bit applications, MATLAB prototype file for the C shared library
• MATLAB prototype and thunk files for a C shared library can be generated on a

development machine (with a supported C compiler) by using LOADLIBRARY
command.

On the machine where you deploy your standalone application:

• If required, all third-party drivers and dependencies need to be installed separately
from the deployed standalone application.

Hardware Support packages

For more info on deploying standalone applications which use functionality installed as a
support package:

web(fullfile(docroot, 'compiler/manage-support-packages.html'))

 Deploying Standalone Applications with Instrument Control Toolbox

21-55

Contact MathWorks and Use the instrsupport Function
If you need support from MathWorks, visit our Web site at http://
www.mathworks.com/support/.

Before contacting MathWorks, run the instrsupport function. This function returns
diagnostic information such as:

• The versions of MathWorks products you are using
• Your MATLAB path
• The characteristics of your hardware
• Information about your adaptors

The output from instrsupport is automatically saved to a text file,
instrsupport.txt, which you can use to help troubleshoot your problem.

To have MATLAB generate this file for you, type

instrsupport

21 Instrument Control Toolbox Troubleshooting

21-56

http://www.mathworks.com/support/
http://www.mathworks.com/support/

Using the Instrument Control Toolbox
Block Library

The Instrument Control Toolbox software includes a Simulink software interface called
the Instrument Control Toolbox block library. You can use the blocks of this library in a
Simulink model to communicate with an instrument.

• “Overview” on page 22-2
• “Opening the Instrument Control Block Library” on page 22-3
• “Building Simulink Models to Transmit Data” on page 22-7

22

Overview
The Instrument Control Toolbox software includes a Simulink software interface called
the Instrument Control Toolbox block library. You can use the blocks of this library in a
Simulink model to communicate with an instrument.

The topics in this section describe how to use the Instrument Control Toolbox block
library. The block library consists of these blocks:

• Query Instrument — Query the instrument for data.
• Serial Configuration — Configure a serial port to send an receive data.
• Serial Receive — Receive data over a serial network.
• Serial Send — Send data over a serial network.
• TCPIP Receive — Receive data over a TCP/IP network.
• TCPIP Send — Send data over a TCP/IP network.
• To Instrument — Send data to the instrument.
• UDP Receive — Receive data over an UDP network.
• UDP Send — Send data over and UDP network.

The Instrument Control Toolbox block library is a tool for sending live data from your
model to an instrument, or querying an instrument to receive live data into your model.
You can use blocks from the block library with blocks from other Simulink libraries to
create sophisticated models.

To use the Instrument Control Toolbox block library you require Simulink, a tool for
simulating dynamic systems. Simulink is a model definition environment. Use Simulink
blocks to create a block diagram that represents the computations of your system or
application. Simulink is also a model simulation environment. Run the block diagram to
see how your system behaves. If you are new to Simulink, read the Simulink Getting
Started Guide in the Simulink documentation to better understand its functionality.

For more detailed information about the blocks in the Instrument Control Toolbox block
library, see the blocks documentation. For examples of using the Instrument Control
Toolbox block library to build models to send and receive data, see “Building Simulink
Models to Transmit Data” on page 22-7.

22 Using the Instrument Control Toolbox Block Library

22-2

Opening the Instrument Control Block Library
In this section...
“Using the instrumentlib Command from MATLAB” on page 22-3
“Using the Simulink Library Browser” on page 22-5

Using the instrumentlib Command from MATLAB

To open the Instrument Control block library, enter

instrumentlib

in the MATLAB Command Window. MATLAB displays the contents of the library in a
separate window.

 Opening the Instrument Control Block Library

22-3

22 Using the Instrument Control Toolbox Block Library

22-4

Using the Simulink Library Browser

To open the Instrument Control Toolbox block library, start the Simulink Library
Browser and select the library from the list of available block libraries displayed in the
browser.

To start the Simulink Library Browser, enter

simulink

in the MATLAB Command Window. MATLAB opens the browser window. The left pane
lists available block libraries, with the basic Simulink library listed first, followed by
other libraries alphabetical order. To open the Instrument Control Toolbox block library,
click its icon.

Simulink Library Browser

 Opening the Instrument Control Block Library

22-5

Simulink loads the library and displays the blocks in the library.

22 Using the Instrument Control Toolbox Block Library

22-6

Building Simulink Models to Transmit Data
In this section...
“Sending and Receiving Data Through a Serial Port Loopback” on page 22-7
“Sending and Receiving Data Over a TCP/IP Network” on page 22-17

Sending and Receiving Data Through a Serial Port Loopback

This section provides an example that builds a simple model using the Instrument
Control Toolbox blocks in conjunction with other blocks in the Simulink library. The
example illustrates how to send data to a simple loopback device connected to the
computer's COM1 serial port and to read that data back into your model.

You will use the To Instrument block to write a value to the serial port on your computer,
and then use the Query Instrument block to read that same value back into your model.

Note Block names are not shown by default in the model. To display the hidden block
names while working in the model, select Display and clear the Hide Automatic
Names check box.

• “Step 1: Create a New Model” on page 22-7
• “Step 2: Open the Block Library” on page 22-8
• “Step 3: Drag the Instrument Control Toolbox Blocks into the Model” on page 22-9
• “Step 4: Drag Other Blocks to Complete the Model” on page 22-10
• “Step 5: Connect the Blocks” on page 22-12
• “Step 6: Specify the Block Parameter Values” on page 22-13
• “Step 7: Specify the Block Priority” on page 22-15
• “Step 8: Run the Simulation” on page 22-16

Step 1: Create a New Model

To start Simulink and create a new model, enter the following at the MATLAB command
prompt:

simulink

 Building Simulink Models to Transmit Data

22-7

In the Simulink start page, click Blank Model, and then Create Model. An empty,
Editor window opens.

In the Editor, click File > Save to assign a name to your new model.

Step 2: Open the Block Library

In the model Editor window, click the Library Browser button or click View > Library
Browser.

The Simulink Library Browser opens. Its left pane contains a tree of available block
libraries in alphabetical order. Click the Instrument Control Toolbox node.

To use a block, add it to an existing model or create a new model.

22 Using the Instrument Control Toolbox Block Library

22-8

Step 3: Drag the Instrument Control Toolbox Blocks into the Model

To use the blocks in a model, click a block in the library and, holding the mouse button
down, drag it into the Simulink Editor. For this example, you need one instance of the To
Instrument and the Query Instrument blocks in your model.

Note The To Instrument block can be used with these interfaces: VISA, GPIB, Serial,
TCP/IP, and UDP. It is not supported on these interfaces: SPI, I2C, and Bluetooth.

 Building Simulink Models to Transmit Data

22-9

Drag Instrument Control Toolbox Blocks into Model

Step 4: Drag Other Blocks to Complete the Model

This example requires two more blocks. One block provides the data that is sent to the
instrument; the other block displays the data received from the instrument.

22 Using the Instrument Control Toolbox Block Library

22-10

Because the data sent to the instrument will be a constant, you can use the Constant
block for this purpose. Access the block by expanding the Simulink node in the browser
tree, and clicking the Sources library entry. From the blocks in the right pane, drag the
Constant block into the Simulink Editor and place it to the left of the To Instrument
block.

Drag Constant Block to the Model Window

To display the data received from the instrument, you can use the Display block. To
access the Display block, click the Sinks library entry in the expanded Simulink node in

 Building Simulink Models to Transmit Data

22-11

the browser tree. From the blocks displayed in the right pane, drag the Display block into
the Simulink Editor and place it to the right of the Query Instrument block.

Step 5: Connect the Blocks

Make a connection between the Constant block and the To Instrument block. A quick
way to make the connection is to select the Constant block, press and hold the Ctrl key,
and then click the To Instrument block.

In the same way, make the connection between the output port of the Query Instrument
block and the input port of the Display block.

Note The two blocks do not directly connect together within the model. The only
communication between them is through the instrument, which is the loopback
connected to the COM1 serial port. Because there is no direct connection between these
two blocks, you must consider their timing when running the model. The Query
Instrument block does not get its input from the To Instrument block, so it has no way to
know when the data from the instrument is available. Therefore, you must set the block

22 Using the Instrument Control Toolbox Block Library

22-12

parameters to write the data to the loopback before the model attempts to receive data
from the loopback.

Step 6: Specify the Block Parameter Values

Set parameters for the blocks in your model by double-clicking the block.

Double-click the To Instrument block to open its parameters dialog box. Accept the
default values configured for this block, so you do not need to modify any of the values.

Click OK to close the dialog box.

 Building Simulink Models to Transmit Data

22-13

Double-click the Query Instrument block to open its parameters dialog box. Make sure
that the values on the Hardware Configuration tab match the Hardware values on
the To Instrument block.

The model uses the default values on the Instrument Initialization and Query tabs of
this block, so you do not need to modify any of their values.

22 Using the Instrument Control Toolbox Block Library

22-14

Click OK to apply any changes and close the dialog box.

Double-click the Constant block to open its parameters dialog box. Change the Constant
value to the value you want to send to the instrument. For this example, change:

1 Constant value to 25.
2 Sample time to 1.

Click OK.

For the Display block, you can use its default parameters.

Step 7: Specify the Block Priority

The block with the lowest number gets the highest priority. In the Simulink Editor,
right-click a block and select Properties. Enter the priority number in the Priority

 Building Simulink Models to Transmit Data

22-15

field in the Block Properties dialog box. To ensure that the To Instrument block first
completes writing data to the loopback before the Query Instrument block reads it, set
the priority of the To Instrument block to 1 and the Query Instrument block to 2.

Caution It is essential to set the correct priority for the blocks in your model. Otherwise
you may see unexpected results.

To understand more about block priorities, see the Simulink documentation.

Step 8: Run the Simulation

To run the simulation, click the green Run button on the Simulink Editor toolbar. You
can use toolbar options to specify how long to run the simulation and to stop a running
simulation. You can also start the simulation by selecting Simulation > Run.

When you run the simulation, the constant value you specified (25) is written to the
instrument (the serial loopback), received from the instrument, and shown in the Display
block.

22 Using the Instrument Control Toolbox Block Library

22-16

While the simulation is running, the status bar at the bottom of the Simulink Editor
updates the progress of the simulation.

Sending and Receiving Data Over a TCP/IP Network
This example builds a simple model using the Instrument Control blocks in the block
library in conjunction with other blocks in the Simulink library. This example also
illustrates how to send data to an echo server using TCP/IP and to read that data back
into your model.

You will create an echo server on your machine that simulates sending a signal to the
TCP/IP send block and echo the result back to the Send block to send data, and then use
the TCP/IP Receive block to read that same data back into your model.

Note Block names are not shown by default in the model. To display the hidden block
names while working in the model, select Display and clear the Hide Automatic
Names check box.

• “Step 1: Create an Echo Server” on page 22-17
• “Step 2: Create a New Model” on page 22-18
• “Step 3: Open the Block Library” on page 22-18
• “Step 4: Drag the Instrument Control Toolbox Blocks into the Model” on page 22-19
• “Step 5: Drag the Sine Wave and Scope Blocks to Complete the Model” on page 22-20
• “Step 6: Connect the Blocks” on page 22-25
• “Step 7: Specify the Block Parameter Values” on page 22-25
• “Step 8: Specify the Block Priorities” on page 22-27
• “Step 9: Run the Simulation” on page 22-28
• “Step 10: View the Result” on page 22-29

Step 1: Create an Echo Server

Open a port on your computer to work as an echo server that you can use to send and
receive signals via TCP/IP. To create an echo server, type this command in MATLAB:

echotcpip('on', 50000)

Port 50000 opens on your machine to work as an echo server and turn it on.

 Building Simulink Models to Transmit Data

22-17

Step 2: Create a New Model

To start Simulink and create a new model, enter the following at the MATLAB command
prompt:

simulink

In the Simulink start page, click Blank Model, and then Create Model. An empty,
Editor window opens.

In the Editor, click File > Save to assign a name to your new model.

Step 3: Open the Block Library

In the model Editor window, click the Library Browser button or click View > Library
Browser.

The Simulink Library Browser opens. Its left pane contains a tree of available block
libraries in alphabetical order. Click the Instrument Control Toolbox node.

To use a block, add it to an existing model or create a new model.

22 Using the Instrument Control Toolbox Block Library

22-18

Step 4: Drag the Instrument Control Toolbox Blocks into the Model

To use the blocks in a model, click each block in the library and, holding the mouse
button down, drag it into the Simulink Editor. For this model, you need one instance of
the TCP/IP Send and the TCP/IP Receive blocks in your model.

 Building Simulink Models to Transmit Data

22-19

Drag Instrument Control Toolbox Blocks into the Model

Step 5: Drag the Sine Wave and Scope Blocks to Complete the Model

This example requires two more blocks. One block displays the data received from the
receive block and the other block is the data to be sent to the send block.

22 Using the Instrument Control Toolbox Block Library

22-20

The TCP/IP Send block needs a data source for data to be sent. Add the Sine Wave block
to the model to send signals to the TCP/IP Send block. To access the Sine Wave block,
expand the Simulink node in the browser tree, and click the Sources library entry. From
the blocks in the right pane, drag the Sine Wave block into the model and place it to the
left of the TCP/IP Send block.

 Building Simulink Models to Transmit Data

22-21

Drag Sine Wave Block to the Model

22 Using the Instrument Control Toolbox Block Library

22-22

To display the data received by the TCP/IP Receive block, use the Scope block. To access
this block, click the Sinks library entry in the expanded Simulink node in the browser
tree. From the blocks in the right pane, drag the Display block into the model and place
it to the right of the TCP/IP Receive block.

 Building Simulink Models to Transmit Data

22-23

Drag Scope Block to the Model

22 Using the Instrument Control Toolbox Block Library

22-24

Step 6: Connect the Blocks

Make a connection between the Sine Wave block and the TCP/IP Send block. A quick way
to make the connection is to select the Sine Wave block, press and hold the Ctrl key, and
then click the TCP/IP Send block. In the same way, make the connection between the
output port of the TCP/IP Receive block and the input port of the Scope block.

Step 7: Specify the Block Parameter Values

Set parameters for the blocks in your model by double-clicking the block.
Configure the Send Block

Double-click the TCP/IP Send block to open its parameters dialog box. Set the Remote
address field to localhost and the Port field to 50000, since that is the address you
set the echo server to when you started it.

 Building Simulink Models to Transmit Data

22-25

Click Apply and then OK.
Configure the Receive Block

Double-click the Receive block to open its parameters dialog box. Set the Remote
address field to localhost and the Port field to 50000. Change the Data type to
double. The Block sample time field is set to 0.01 by default. The block sample time
here must match the one in the Sine Wave block, so confirm that they are both set to
0.01.

22 Using the Instrument Control Toolbox Block Library

22-26

Click OK.
Configure the Sine Wave Block

Double-click the Sine Wave block to open its parameters dialog box. Set the Sample
time field to 0.01.

Click OK.

Step 8: Specify the Block Priorities

To run the simulation correctly, specify the order in which Simulink should process the
blocks. Right-click the block and select Properties. Enter the priority number in the

 Building Simulink Models to Transmit Data

22-27

Priority field. In this case, set the priority of TCP/IP Send to 1 and TCP/IP Receive
to 2.

Caution It is essential to set the correct priority for the blocks in your model. Otherwise,
you may see unexpected results.

Read the Simulink documentation to understand more about block priorities.

You also need to set two parameters on the model. In the Simulink Editor, select
Simulation > Model Configuration Parameters. In the Configuration Parameters
dialog box, set the Type field to Fixed-step and set the Solver field to discrete (no
continuous states).

Step 9: Run the Simulation

To run the simulation, click the green Run button on the Simulink Editor toolbar. You
can use toolbar options to specify how long to run the simulation and to stop it. You can
also start the simulation by selecting Simulation > Run.

22 Using the Instrument Control Toolbox Block Library

22-28

While the simulation runs, the status bar at the bottom of the Simulink Editor updates
the progress of the simulation.

Step 10: View the Result

Double-click the Scope block to view the signal on a graph as it is received by the TCP/IP
Receive block.

 Building Simulink Models to Transmit Data

22-29

For more information about Instrument Control Toolbox blocks, see the blocks reference
documentation.

22 Using the Instrument Control Toolbox Block Library

22-30

Functions — Alphabetical List

23

Test and Measurement Tool
Control oscilloscopes and other instruments

Description
The Test & Measurement Tool enables you to configure and control resources, such as
instruments, serial devices, drivers, and interfaces, through Instrument Control Toolbox
without having to write a MATLAB script.

Use the Test & Measurement Tool to manage your session with the toolbox. You can:

• Detect available hardware and drivers.
• Connect to an instrument or device.
• Configure instrument or device settings.
• Read and write data.
• Automatically generate the MATLAB script.
• Visualize acquired data.
• Export acquired data to the MATLAB workspace.

Open the Test and Measurement Tool App
• MATLAB Toolstrip: On the Apps tab, under Test and Measurement, click the app

icon.
• MATLAB command prompt: Enter tmtool.

Examples
• “Using the Test & Measurement Tool” on page 18-4

23 Functions — Alphabetical List

23-2

Programmatic Use

tmtool opens the Test & Measurement Tool, which enables you to configure and control
resources, such as instruments, serial devices, drivers, and interfaces, accessible through
the Instrument Control Toolbox.

See Also

Topics
“Using the Test & Measurement Tool” on page 18-4

Introduced before R2006a

 Test and Measurement Tool

23-3

add
Add entry to IVI configuration store object

Syntax
add(obj, 'type', 'name', ...)
add(obj, 'DriverSession', 'name', 'ModuleName', 'HardwareAssetName',
'P1', V1)
add(obj, 'HardwareAsset', 'name', 'IOResourceDescriptor', 'P1', V1)
add(obj, 'LogicalName', 'name', 'SessionName', 'P1', V1)
add(obj, struct)

Arguments
obj IVI configuration store object
'DriverSession'
'HardwareAsset'
'LogicalName'

Type of entry being added

'name' Name of the DriverSession, HardwareAsset, or
LogicalName being added

'IOResourceDescriptor' Tells the driver exactly how to locate the device this
asset represents

'ModuleName' IVI instrument driver or software module
'HardwareAssetName' Unique identifier for hardware asset
'SessionName' Unique identifier for asset driver session
'P1' First optional parameter for added entry. Other

parameter-value pairs may follow.
V1 Value for first parameter
struct Structure defining entry to be added; field names are

the entry parameter names

23 Functions — Alphabetical List

23-4

Description
add(obj, 'type', 'name', ...) adds a new entry of type to the IVI configuration
store object, obj, with name, name. If an entry of type, type, with name, name, already
exists an error will occur. Based on type, additional arguments are required. type can
be HardwareAsset, DriverSession, or LogicalName.

add(obj, 'DriverSession', 'name', 'ModuleName', 'HardwareAssetName',
'P1', V1) adds a new driver session entry to the IVI configuration store object, obj,
with name, name, using the specified software module name, ModuleName and hardware
asset name, HardwareAssetName. Optional parameter-value pairs may be included.

Valid parameters for DriverSession are listed below. The default value for on/off
parameters is off.
Parameter Value Description
Description Any character

vector
Description of driver session

VirtualNames structure A struct array containing virtual name
mappings

Cache on/off Enable caching if the driver supports it.
DriverSetup Any character

vector
This value is software module dependent

InterchangeCheck on/off Enable driver interchangeability
checking, if supported

QueryInstrStatus on/off Enable instrument status querying by
the driver

RangeCheck on/off Enable extended range checking by the
driver, if supported

RecordCoercions on/off Enable recording of coercions by the
driver, if supported

Simulate on/off Enable simulation by the driver

add(obj, 'HardwareAsset', 'name', 'IOResourceDescriptor', 'P1', V1)
adds a new hardware asset entry to the IVI configuration store object, obj, with name,
name, and resource descriptor, IOResourceDescriptor. Optional parameter-value
pairs may be included.

 add

23-5

Valid parameters for HardwareAsset are
Parameter Value Description
Description Any character

vector
Description of hardware asset

add(obj, 'LogicalName', 'name', 'SessionName', 'P1', V1) adds a new
logical name entry to the IVI configuration store object, obj, with name, name, and
driver session name, SessionName. Optional parameter-value pairs may be included.

Valid parameters for LogicalName are
Parameter Value Description
Description Any character

vector
Description of logical name

add(obj, struct), where struct is a structure whose field names are the entry
parameter names, adds an entry to the IVI configuration store object, obj, of the
specified type with the values contained in the structure.

Additions made to the configuration store object, obj, can be saved to the configuration
store data file with the commit function.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Examples
Construct IVI configuration store object, c.

c = iviconfigurationstore;

Add a hardware asset with name gpib1, and resource description GPIB0::1::INSTR.

add(c, 'HardwareAsset', 'gpib1', 'GPIB0::1::INSTR');

Add a driver session with name S1, that uses the TekScope software module and the
hardware asset with name gpib1.

23 Functions — Alphabetical List

23-6

add(c, 'DriverSession', 'S1', 'TekScope', 'gpib1');

Add a logical name to configuration store object c, with name MyScope, driver session
name S1, and description A logical name.

add(c, 'LogicalName', 'MyScope', 'S1', ...
'Description', 'A logical name');

Add a hardware asset with the name gpib3, and resource description
GPIB0::3::ISNTR.

s.Type = 'HardwareAsset';
s.Name = 'gpib3';
s.IOResourceDescriptor = 'GPIB0::3::INSTR';
add(c, s);

Save the changes to the IVI configuration store data file.

commit(c);

See Also
commit | iviconfigurationstore | remove | update

Introduced before R2006a

 add

23-7

binblockread
Read binblock data from instrument

Syntax
A = binblockread(obj)
A = binblockread(obj,'precision')
[A,count] = binblockread(...)
[A,count,msg] = binblockread(...)

Arguments
obj An interface object.
'precision' The number of bits read for each value, and the interpretation of

the bits as character, integer, or floating-point values.
A Binblock data returned from the instrument.
count The number of values read.
msg A message indicating if the read operation was unsuccessful.

Description
A = binblockread(obj) reads binary-block (binblock) data from the instrument
connected to obj and returns the values to A. The binblock format is described in the
binblockwrite reference pages.

A = binblockread(obj,'precision') reads binblock data translating the MATLAB
values to the precision specified by precision. By default the uchar precision is used
and numeric values are returned in double-precision arrays. Refer to the fread function
for a list of supported precisions.

[A,count] = binblockread(...) returns the number of values read to count.

23 Functions — Alphabetical List

23-8

[A,count,msg] = binblockread(...) returns a warning message to msg if the read
operation did not complete successfully.

Examples
Create the GPIB object g associated with a National Instruments GPIB controller with
board index 0, and a Tektronix TDS 210 oscilloscope with primary address 2.

g = gpib('ni',0,2);
g.InputBufferSize = 3000;

Connect g to the instrument, and write string commands that configure the scope to
transfer binary waveform data from memory location A.

fopen(g)
fprintf(g,'DATA:DESTINATION REFA');
fprintf(g,'DATA:ENCDG SRPbinary');
fprintf(g,'DATA:WIDTH 1');
fprintf(g,'DATA:START 1');

Write the CURVE? command, which prepares the scope to transfer data, and read the
data using the binblock format.

fprintf(g,'CURVE?')
data = binblockread(g);

Tips
Before you can read data from the instrument, it must be connected to obj with the
fopen function. A connected interface object has a Status property value of open. An
error is returned if you attempt to perform a read operation while obj is not connected to
the instrument.

binblockread blocks the MATLAB Command Window until one of the following occurs:

• The data is completely read.
• The time specified by the Timeout property passes.

If msg is not included as an output argument and the read operation was not successful,
then a warning message is returned to the command line.

 binblockread

23-9

Each time binblockread is issued, the ValuesReceived property value is increased by
the number of values read.

Some instruments may send a terminating character after the binblock. binblockread
will not read the terminating character. You can read the terminating character with the
fread function. Additionally, if obj is a GPIB, VISA-GPIB, VISA-VXI, VISA-USB, or
VISA-RSIB object, you can use the clrdevice function to remove the terminating
character.

Note If you do not set the terminator property to '' (null) before you execute fprintf or
fwrite, binblockread may return incomplete data.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
BytesAvailable | InputBufferSize | Status | ValuesReceived | binblockwrite | fopen
| fread | instrhelp

Introduced before R2006a

23 Functions — Alphabetical List

23-10

binblockwrite
Write binblock data to instrument

Syntax
binblockwrite(obj,A)
binblockwrite(obj,A,'precision')
binblockwrite(obj,A,'header')
binblockwrite(obj,A,'precision','header')
binblockwrite(obj,A,'precision','header','headerformat')

Arguments
obj An interface object.
A The data to be written using the binblock format.
'precision' The number of bits written for each value, and the interpretation

of the bits as character, integer, or floating-point values.
'header' The ASCII header text to be prefixed to the data.
'headerformat' C language conversion specification format for the header text.

Description
binblockwrite(obj,A) writes the data specified by A to the instrument connected to
obj as a binary-block (binblock). The binblock format is defined as #<N><D><A>, where

• N specifies the number of digits in D that follow.
• D specifies the number of data bytes in A that follow.
• A is the data written to the instrument.

For example, if A is given by [0 5 5 0 5 5 0], the binblock would be defined as
[double('#') 1 7 0 5 5 0 5 5 0].

 binblockwrite

23-11

binblockwrite(obj,A,'precision') writes binblock data translating the MATLAB
values to the precision specified by precision. By default the uchar precision is used.
Refer to the fwrite function for a list of supported precisions.

binblockwrite(obj,A,'header') writes a binblock using the data, A, and the ASCII
header, header, to the instrument connected to interface object, obj. The data written is
constructed using the formula

<header>#<N><D><A>

binblockwrite(obj,A,'precision','header') writes binary data, A, translating
the MATLAB values to the specified precision, precision. The ASCII header, header,
is prefixed to the binblock.

binblockwrite(obj,A,'precision','header','headerformat') writes binary
data, A, translating the MATLAB values to the specified precision, precision. The
ASCII header, header, is prefixed to the binblock using the format specified by
headerformat.

headerformat is a string containing C language conversion specifications. Conversion
specifications are composed of the character % and the conversion characters d, i, o, u, x,
X, f, e, E, g, G, c, and s. Type instrhelp fprintf for more information on valid values
for headerformat. By default, headerformat is %s.

Examples
s = visa('ni', 'ASRL2::INSTR');
fopen(s);

% Write the command: [double('#14') 0 5 0 5] to the instrument.
binblockwrite(s, [0 5 0 5]);

% Write the command: [double('Curve #14') 0 5 0 5] to the
% instrument.
binblockwrite(s, [0 5 0 5], 'Curve ')
fclose(s);

Tips
Before you can write data to the instrument, it must be connected to obj with the fopen
function. A connected interface object has a Status property value of open. An error is

23 Functions — Alphabetical List

23-12

returned if you attempt to perform a write operation while obj is not connected to the
instrument.

The ValuesSent property value is increased by the number of values written each time
binblockwrite is issued.

An error occurs if the output buffer cannot hold all the data to be written. You can
specify the size of the output buffer with the OutputBufferSize property.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
ValuesSent | OutputBufferSize | OutputEmptyFcn | Status | Timeout |
TransferStatus | binblockread | fopen | fwrite | instrhelp

Introduced before R2006a

 binblockwrite

23-13

bluetooth
Create Bluetooth object

Syntax
B = Bluetooth('RemoteName', Channel)
B = Bluetooth('RemoteID', Channel)
B = Bluetooth('RemoteID', Channel, 'P1',V1,'P2',V2,...)

Description
The Instrument Control Toolbox Bluetooth interface lets you connect to devices over the
Bluetooth interface and to transmit and receive ASCII and binary data. Instrument
Control Toolbox supports the Bluetooth Serial Port Profile (SPP). You can identify any
SPP Bluetooth device and establish a two-way connection with that device.

B = Bluetooth('RemoteName', Channel) constructs a Bluetooth object associated
with the RemoteName and Channel. RemoteName is a friendly way to identify the
RemoteID. If a channel is not specified, it will default to 0.

B = Bluetooth('RemoteID', Channel) constructs a Bluetooth object directly from
the RemoteID and Channel.

In order to communicate with the Bluetooth device, use the fopen function. When the
Bluetooth object is constructed, the object's status property is closed. Once the object
is connected to the remote device with the fopen function, the status property is
configured to open.

B = Bluetooth('RemoteID', Channel, 'P1',V1,'P2',V2,...) constructs a
Bluetooth object associated with the RemoteID, Channel and with the specified property
values. If an invalid property name or property value is specified the object will not be
created. The property value pairs can be in any format supported by the set function,
i.e., param-value character vector pairs, structures, and param-value cell array pairs.

23 Functions — Alphabetical List

23-14

For information on other functions that can be used with Bluetooth, a full example
using the Bluetooth interface, events and callbacks, and usage guidelines see “Bluetooth
Interface Overview” on page 8-2.

Properties that can be used with the Bluetooth object include:
Property Description
Channel Use to specify a channel if the device has channels. If none is

provided, it defaults to 0.
RemoteName “Friendly name” for the Bluetooth device. For example, in the

case of an iPhone, it might be simply 'iPhone' or a name
like 'Zor'.

This property is a character vector and can be empty. If it is
empty, you must use the RemoteID to communicate with the
device.

RemoteID Internal ID of the Bluetooth device, equivalent to the Device
ID. This is usually a 12-digit character vector that starts
with btspp://. For example, 'btspp://0016530FD65F'

This property is a character vector and every device has one.
You can use this or the RemoteName to communicate with
the device.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Examples
Find available Bluetooth devices.

 instrhwinfo('Bluetooth');
 instrhwinfo('Bluetooth', RemoteName);

Construct a Bluetooth object called b using channel 3 of a Lego Mindstorm robot with
RemoteName of NXT.

 bluetooth

23-15

b = Bluetooth('NXT', 3);

Connect to the remote device.

fopen(b)

Send a message to the remote device using the fwrite function.

fwrite(b, uint8([2,0,1,155]));

Read data from the remote device using the fread function.

name = fread(b,35);

Disconnect the Bluetooth device.

 fclose(b);

Clean up by deleting and clearing the object.

 fclose(b);
 clear('b');

See Also

Topics
“Bluetooth Interface Overview” on page 8-2

Introduced in R2011b

23 Functions — Alphabetical List

23-16

clear
Remove instrument objects from MATLAB workspace

Syntax
clear obj

Arguments
obj An instrument object or an array of instrument objects.

Description
clear obj removes obj from the MATLAB workspace.

Examples
This example creates the GPIB object g, copies g to a new variable gcopy, and clears g
from the MATLAB workspace. g is then restored to the workspace with instrfind and
is shown to be identical to gcopy.

g = gpib('ni',0,1);
gcopy = g;
clear g
g = instrfind;
isequal(gcopy,g)
ans =
 1

Tips
If obj is connected to the instrument and it is cleared from the workspace, then obj
remains connected to the instrument. You can restore obj to the workspace with the

 clear

23-17

instrfind function. An object connected to the instrument has a Status property value
of open.

To disconnect obj from the instrument, use the fclose function. To remove obj from
memory, use the delete function. You should remove invalid instrument objects from
the workspace with clear.

See Also
Status | delete | fclose | instrfind | instrhelp | isvalid

Introduced before R2006a

23 Functions — Alphabetical List

23-18

clrdevice
Clear instrument buffer

Syntax
clrdevice(obj)

Arguments
obj A GPIB, VISA-GPIB, VISA-VXI, VISA-GPIB-VXI, VISA-Serial, or VISA-

TCPIP object.

Description
clrdevice(obj) clears the hardware buffer of the instrument connected to obj.

Tips
Before you can clear the hardware buffer, the instrument must be connected to obj with
the fopen function. A connected object has a Status property value of open. If you issue
clrdevice when obj is disconnected from the instrument, then an error is returned.

You can clear the software input buffer using the flushinput function. You can clear
the software output buffer using the flushoutput function.

See Also
Status | flushinput | flushoutput | fopen

Introduced before R2006a

 clrdevice

23-19

commit
Save IVI configuration store object to data file

Syntax
commit(obj)
commit(obj, 'file')

Arguments
obj IVI configuration store object
'file' Configuration store data file

Description
commit(obj) saves the IVI configuration store object, obj, to the configuration store
data file. The configuration store data file is defined by obj's ActualLocation property.

commit(obj, 'file') saves the IVI configuration store object, obj, to the
configuration store data file, file. No changes are saved to the configuration store data
file that is defined by obj's ActualLocation property.

The IVI configuration store object can be modified with the add, update, and remove
functions.

See Also
add | iviconfigurationstore | remove | update

Introduced before R2006a

23 Functions — Alphabetical List

23-20

connect
Connect device object to instrument

Syntax
connect(obj)
connect(obj,'update')

Arguments
obj A device object or an array of device objects.
update Update the state of the object or the instrument.

Description
connect(obj) connects the device object specified by obj to the instrument. obj can be
an array of device objects.

connect(obj,'update') updates the state of the object or the instrument. update can
be object or instrument. If update is object, the object is updated to reflect the state
of the instrument. If update is instrument, the instrument is updated to reflect the
state of the object. In this case, all property values defined by the object are sent to the
instrument on open. By default, update is object.

Examples
Create a device object for a Tektronix TDS 210 oscilloscope that is connected to a
National Instruments GPIB board.

g = gpib('ni',0,2);
d = icdevice('tektronix_tds210',g);

Connect to the instrument.

 connect

23-21

connect(d)

List the oscilloscope settings that can be configured.

props = set(d);

Get the current configuration of the oscilloscope.

values = get(d);

Disconnect from the instrument and clean up.

disconnect(d)
delete([d g])

Tips
If obj is successfully connected to the instrument, its Status property is configured to
open. If obj is an array of device objects and one of the objects cannot be connected to
the instrument, the remaining objects in the array will be connected and a warning is
displayed.

See Also
Status | delete | disconnect | instrhelp

Introduced before R2006a

23 Functions — Alphabetical List

23-22

delete
Remove instrument objects from memory

Syntax
delete(obj)

Arguments
obj An instrument object or an array of instrument objects.

Description
delete(obj) removes obj from memory.

Examples
This example creates the GPIB object g, connects g to the instrument, writes and reads
text data, disconnects g, removes g from memory using delete, and then removes g
from the workspace using clear.

g = gpib('ni',0,1);
fopen(g)
fprintf(g,'*IDN?')
idn = fscanf(g);
fclose(g)
delete(g)
clear g

Tips
When you delete obj, it becomes an invalid object. Because you cannot connect an
invalid object to the instrument, you should remove it from the workspace with the

 delete

23-23

clear command. If multiple references to obj exist in the workspace, then deleting one
reference invalidates the remaining references.

If obj is connected to the instrument, it has a Status property value of open. If you
issue delete while obj is connected, the connection is automatically broken. You can
also disconnect obj from the instrument with the fclose function.

If obj is an interface object that is associated with a device object, the device object is
automatically deleted when obj is deleted. However, if obj is a device object, the
interface object is not automatically deleted when obj is deleted.

See Also
Status | clear | fclose | instrhelp | isvalid | stopasync

Introduced before R2006a

23 Functions — Alphabetical List

23-24

devicereset
Reset instrument

Syntax
devicereset(obj)

Arguments
obj A device object.

Description
devicereset(obj) resets the instrument associated with the device object specified by
obj.

Introduced before R2006a

 devicereset

23-25

disconnect
Disconnect device object from instrument

Syntax
disconnect(obj)

Arguments
obj A device object or an array of device objects.

Description
disconnect(obj) disconnects the device object specified by obj from the instrument.

Examples
Create a device object for a Tektronix TDS 210 oscilloscope that is connected to a
National Instruments GPIB board.

g = gpib('ni',0,2);
d = icdevice('tektronix_tds210',g);

Connect to the instrument.

connect(d)

Get the current configuration of the oscilloscope.

values = get(d);

Disconnect from the instrument and clean up.

disconnect(d)
delete([d g])

23 Functions — Alphabetical List

23-26

Tips
If obj is disconnected from the instrument, its Status property is configured to closed.
You can reconnect to the instrument with the connect function. If obj is an array of
device objects and one of the objects cannot be disconnected from the instrument, the
remaining objects in the array will be disconnected and a warning is displayed.

See Also
Status | connect | delete | instrhelp

Introduced before R2006a

 disconnect

23-27

disp
Display instrument object summary information

Syntax
obj
disp(obj)

Arguments
obj An instrument object or an array of instrument objects.

Description
obj or disp(obj) displays summary information for obj.

Examples
The following commands display summary information for the GPIB object g.

g = gpib('ni',0,1)
g.EOSMode = 'read'
g

Tips
In addition to the syntax shown above, you can display summary information for obj by
excluding the semicolon when

• Creating an instrument object
• Configuring property values using the dot notation

23 Functions — Alphabetical List

23-28

You can also display summary information via the Workspace browser by right-clicking
an instrument object, and selecting Display Summary from the context menu.

Introduced before R2006a

 disp

23-29

download
Downloads arbitrary waveform to RF signal generator

Syntax
download(rf, IQData, SampleRate)

Description
download(rf, IQData, SampleRate) downloads an arbitrary waveform to the RF
signal generator, rf. It accepts a complex vector of doubles containing the IQData and a
double defining the SampleRate of the signal.

Examples

Download a Waveform to RF Signal Generator

You can download a waveform to your rfsiggen object and assign the IQData and
SampleRate to use.

Create an rfsiggen object to communicate with an RF signal generator using the VISA
resource string and driver associated with your own instrument.

rf = rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR','AgRfSigGen')

When you designate the Resource and Driver properties during object creation, it
automatically connects to the instrument.

Assign the IQData and SampleRate variables to use in the download.

IQData = (-0.98:0.02:1) + 1i*(-0.98:0.02:1);
SampleRate = 800000;

Perform the download.

23 Functions — Alphabetical List

23-30

download(rf, IQData, SampleRate)

• “Download and Generate Signals with RF Signal Generator” on page 14-59

Input Arguments
IQData — IQ data to use in the download
vector of doubles

IQ data to use in the download, specified as a vector of doubles. This example downloads
the data to the RF Signal Generator object rf using the specified IQ data and sample
rate.
Example: download(rf, IQData, SampleRate)
Data Types: double
Complex Number Support: Yes

SampleRate — Sample rate of the signal
double

Sample rate of the signal, specified as a double. This example downloads the data to the
RF signal generator object rf using the specified IQ data and sample rate.
Example: download(rf, IQData, SampleRate)
Data Types: double

See Also
drivers | resources | rfsiggen | start

Topics
“Download and Generate Signals with RF Signal Generator” on page 14-59
“Quick-Control RF Signal Generator Functions” on page 14-54
“Quick-Control RF Signal Generator Properties” on page 14-56

 download

23-31

drivers
List of available instrument drivers for Quick-Control interfaces

Syntax
drivers(rf)

Description
drivers(rf) lists the drivers for RF signal generator object rf. It returns a list of
drivers for the Quick-Control RF Signal Generator, Quick-Control Oscilloscope, or Quick-
Control Function Generator objects. It also lists instrument model information for each
driver.

Examples

List Drivers and Connect to RF Signal Generator

The drivers function can list drivers available for any of the Quick-Control interface
objects: RF signal generator (rfsiggen), oscilloscope (oscilloscope), or function
generator (fgen). This example uses Quick-Control RF Signal Generator, but the
function also works in the same way for the other two object types.

Create an RF signal generator object without assigning the resource or driver.

rf = rfsiggen;

List the drivers.

drivers(rf)

ans =

 Driver: AgRfSigGen_SCPI

23 Functions — Alphabetical List

23-32

 Supported Models:
 E4428C, E4438C

 Driver: RsRfSigGen_SCPI
 Supported Models:
 SMW200A, SMBV100A, SMU200A, SMJ100A, AMU200A, SMATE200A

 Driver: AgRfSigGen
 Supported Models:
 E4428C,E4438C,N5181A,N5182A,N5183A,N5171B,N5181B,N5172B
 N5182B,N5173B,N5183B,E8241A,E8244A,E8251A,E8254A,E8247C

In this case, it finds the drivers for a Keysight (formerly Agilent) SCPI-based RF signal
generator, a Rohde & Shwartz SCPI-based generator, and another Keysight generator.
You can see that it lists supported models in each case.

Set the RF signal generator resource using the Resource property, which is the VISA
resource string.

rf.Resource = 'TCPIP0::172.28.22.99::inst0::INSTR';

Set the RF signal generator driver using the Driver property. The driver name came
from using the drivers function in step 2.

rf.Driver = 'AgRfSigGen';

You can now connect to the instrument.

connect(rf);

• “Download and Generate Signals with RF Signal Generator” on page 14-59

See Also
download | resources | rfsiggen | start

Topics
“Download and Generate Signals with RF Signal Generator” on page 14-59
“Quick-Control RF Signal Generator Functions” on page 14-54
“Quick-Control RF Signal Generator Properties” on page 14-56

 drivers

23-33

Introduced in R2017b

23 Functions — Alphabetical List

23-34

echotcpip
Start or stop TCP/IP echo server

Syntax
echotcpip('state',port)
echotcpip('state')

Arguments
'state' Turn the server on or off.
port Port number of the server.

Description
echotcpip('state',port) starts a TCP/IP server with port number specified by
port. state can only be on.

echotcpip('state') stops the echo server. state can only be off.

Examples

Communicate with an Echo Server

This example shows how to set up an echo server. Start the echo server on port 4000 and
create a TCPIP object. Connect the TCPIP object to the host.

echotcpip('on',4000)
t = tcpip('localhost',4000);
fopen(t)

Communicate with the echo server. Write to the host and read from the host, then
display the read data.

 echotcpip

23-35

fprintf(t,'echo this string.')
data = fscanf(t);
data

data =

 1×18 char array

echo this string.

Dismiss the echo server. Stop the echo server and disconnect the TCPIP object from the
host.

echotcpip('off')
fclose(t)

See Also
echoudp | tcpip | udp

Introduced before R2006a

23 Functions — Alphabetical List

23-36

echoudp
Start or stop UDP echo server

Syntax
echoudp('state', port)
echoudp('state')

Arguments
'state' Turn the server on or off.
port Port number of the server.

Description
echoudp('state', port) starts a UDP server with port number specified by port.
state can only be on.

echoudp('state') stops the echo server. state can only be off.

Examples
Start the echo server and create a UDP object.

echoudp('on',4012)
u = udp('127.0.0.1',4012);

Connect the UDP object to the host.

fopen(u)

Write to the host and read from the host.

fwrite(u,65:74)
A = fread(u,10);

 echoudp

23-37

Stop the echo server and disconnect the UDP object from the host.

echoudp('off')
fclose(u)

See Also
echotcpip | tcpip | udp

Introduced before R2006a

23 Functions — Alphabetical List

23-38

fclose
Disconnect interface object from instrument

Syntax
fclose(obj)

Arguments
obj An interface object or an array of interface objects.

Description
fclose(obj) disconnects obj from the instrument.

Examples
This example creates the GPIB object g, connects g to the instrument, writes and reads
text data, and then disconnects g from the instrument using fclose.

g = gpib('ni',0,1);
fopen(g)
fprintf(g,'*IDN?')
idn = fscanf(g);
fclose(g)

At this point, you can once again connect an interface object to the instrument. If you no
longer need g, you should remove it from memory with the delete function, and remove
it from the workspace with the clear command.

 fclose

23-39

Tips
If obj was successfully disconnected, then the Status property is configured to closed
and the RecordStatus property is configured to off. You can reconnect obj to the
instrument using the fopen function.

An error is returned if you issue fclose while data is being written asynchronously. In
this case, you should abort the write operation with the stopasync function, or wait for
the write operation to complete.

See Also
RecordStatus | Status | clear | delete | fopen | instrhelp | record | stopasync

Introduced before R2006a

23 Functions — Alphabetical List

23-40

fgen
Create Quick-Control Function Generator object

Syntax
myFGen = fgen()
connect(myFGen);
set(myFGen, 'P1',V1,'P2',V2,...)
enableOutput(myFGen);

Description
The Quick-Control Function Generator can be used for any function generator that uses
an underlying IVI-C driver. However, you do not have to directly deal with the
underlying driver. This fgen object is easy to use.

myFGen = fgen() creates an instance of the function generator named myFGen.

connect(myFGen); connects to the function generator.

set(myFGen, 'P1',V1,'P2',V2,...) assigns the specified property values.

enableOutput(myFGen); enables the function generator to produce a signal that
appears at the output connector.

For information on the prerequisites for using fgen, see “Quick-Control Function
Generator Requirements” on page 14-38.

The Quick-Control Function Generator fgen function can use the following special
functions, in addition to standard functions such as connect and disconnect.

 fgen

23-41

Function Description
selectChannel Specifies the channel name from which the function

generator produces the waveform.

Example:

 selectChannel(myFGen, '1');
drivers Returns a list of available function generator instrument

drivers.

Example:

driverlist = drivers(myFGen);
resources Retrieves a list of available instrument resources. It returns

a list of available VISA resource strings when using an IVI-
C function generator.

Example:

res = resources(myFGen);
selectWaveform Specifies which arbitrary waveform the function generator

produces.

Example:

selectWaveform (myFGen, wh);

where wh is the waveform handle you are selecting.

23 Functions — Alphabetical List

23-42

Function Description
downloadWaveform Downloads an arbitrary waveform to the function generator.

If you provide an output variable, a waveform handle is
returned. It can be used in the selectWaveform and
removeWaveform functions.

If you don't provide an output variable, function generator
will overwrite the waveform when a new waveform is
downloaded and deletes it upon disconnection.

Example:
 % To download the following waveform to fgen
 w = 1:0.001:2;
 downloadWaveform (myFGen, w);

 % To download a waveform to fgen and return a
 waveform handle
 wh = downloadWaveform (myFGen, w);

removeWaveform Removes a previously created arbitrary waveform from the
function generator's memory. If a waveform handle is
provided, it removes the waveform represented by the
waveform handle.

Example:
 % Remove a waveform from fgen with waveform
 handle 10000
 removeWaveform (myFGen, 10000);

enableOutput Enables the function generator to produce a signal that
appears at the output connector. This function produces a
waveform defined by the Waveform property. If the
Waveform property is set to 'Arb', the function uses the
latest internal waveform handle to output the waveform.

enableOutput (myFGen);
disableOutput Disables the signal that appears at the output connector.

Disables the selected channel.

disableOutput (myFGen);
reset Sets the function generator to factory state.

 fgen

23-43

Arguments
The Quick-Control Function Generator fgen can use the following properties.
Property Description
AMDepth Specifies the extent of Amplitude modulation the

function generator applies to the carrier signal. The
units are a percentage of full modulation. At 0% depth,
the output amplitude equals the carrier signal's
amplitude. At 100% depth, the output amplitude
equals twice the carrier signal's amplitude. This
property affects function generator behavior only when
the Mode is set to 'AM' and ModulationResource is
set to 'internal'.

Amplitude Specifies the amplitude of the standard waveform. The
value is the amplitude at the output terminal. The
units are volts peak-to-peak (Vpp). For example, to
produce a waveform ranging from -5.0 to +5.0 volts, set
this value to 10.0 volts. Does not apply if Waveform is
of type 'Arb'.

ArbWaveformGain Specifies the factor by which the function generator
scales the arbitrary waveform data. Use this property
to scale the arbitrary waveform to ranges other than
-1.0 to +1.0. When set to 2.0, the output signal ranges
from -2.0 to +2.0 volts. Only applies if Waveform is of
type 'Arb'.

BurstCount Specifies the number of waveform cycles that the
function generator produces after it receives a trigger.
Only applies if Mode is set to 'burst'.

ChannelNames This read-only property provides available channel
names in a cell array.

Driver This property is optional. Use only if necessary to
specify the underlying driver used to communicate
with an instrument. If the DriverDetectionMode
property is set to 'manual', use the Driver property
to specify the instrument driver.

23 Functions — Alphabetical List

23-44

Property Description
DriverDetectionMode Sets up criteria for connection. Valid values are

'auto' and 'manual'. The default value is 'auto',
which means you do not need to set a driver name
before connecting to an instrument. If set to
'manual', a driver name needs to be provided using
the Driver property before connecting to instrument.

FMDeviation Specifies the maximum frequency deviation the
modulating waveform applies to the carrier waveform.
This deviation corresponds to the maximum amplitude
level of the modulating signal. The units are Hertz
(Hz). This property affects function generator behavior
only when Mode is set to 'FM' and
ModulationSource is set to 'internal'.

Frequency Specifies the rate at which the function generator
outputs an entire arbitrary waveform when Waveform
is set to 'Arb'. It specifies the frequency of the
standard waveform when Waveform is set to standard
waveform types. The units are Hertz (Hz).

Mode Specifies run mode. Valid values are 'continuous',
'burst', 'AM', or 'FM'. Specifies how the function
generator produces waveforms. It configures the
instrument to generate output continuously or to
generate a discrete number of waveform cycles based
on a trigger event. It can also be set to AM and FM.

ModulationFrequency Specifies the frequency of the standard waveform that
the function generator uses to modulate the output
signal. The units are Hertz (Hz). This attribute affects
function generator behavior only when Mode is set to
'AM' or 'FM' and the ModulationSource attribute is
set to 'internal'.

ModulationSource Specifies the signal that the function generator uses to
modulate the output signal. Valid values are
'internal' and 'external'. This attribute affects
function generator behavior only when Mode is set to
'AM' or 'FM'.

 fgen

23-45

Property Description
ModulationWaveform Specifies the standard waveform type that the function

generator uses to modulate the output signal. This
affects function generator behavior only when Mode is
set to 'AM' or 'FM' and the ModulationSource is set
to 'internal'. Valid values are 'sine', 'square',
'triangle', 'RampUp', 'RampDown', and 'DC'.

Offset Uses the standard waveform DC offset as input
arguments if the waveform is not of type 'Arb'. Use
Arb Waveform Offset as input arguments if the
waveform is of type 'Arb'.

Specifies the DC offset of the standard waveform when
Waveform is set to standard waveform. For example, a
standard waveform ranging from +5.0 volts to 0.0 volts
has a DC offset of 2.5 volts. When Waveform is set to
'Arb', this property shifts the arbitrary waveform's
range. For example, when it is set to 1.0, the output
signal ranges from 2.0 volts to 0.0 volts.

OutputImpedance Specifies the function generator's output impedance at
the output connector.

Resource Set this before connecting to the instrument. It is the
VISA resource string for your instrument.

SelectedChannel Returns the selected channel name that was set using
the selectChannel function.

StartPhase Specifies the horizontal offset in degrees of the
standard waveform the function generator produces.
The units are degrees of one waveform cycle. For
example, a 180-degree phase offset means output
generation begins halfway through the waveform.

Status This read-only property indicates the communication
status of your instrument session. It is either 'open'
or 'closed'.

23 Functions — Alphabetical List

23-46

Property Description
TriggerRate Specifies the rate at which the function generator's

internal trigger source produces a trigger, in triggers
per second. This property affects function generator
behavior only when the TriggerSource is set to
'internal'. Only applies if Mode is set to 'burst'.

TriggerSource Specifies the trigger source. After the function
generator receives a trigger, it generates an output
signal if Mode is set to 'burst'. Valid values are
'internal' or 'external'.

Waveform Uses the waveform type as an input argument. Valid
values are 'Arb', for an arbitrary waveform, or these
standard waveform types – 'Sine', 'Square',
'Triangle', 'RampUp', 'RampDown', and 'DC'.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Examples
Create an instance of the function generator called myFGen.

myFGen = fgen()

Discover available resources. A resource string is an identifier to the instrument. You
need to set it before connecting to the instrument.

availableResources = resources(myFGen)

Set the resource. In this example, we are controlling an instrument that is connected via
GPIB with a board index of 0 and primary address of 10.

myFGen.Resource = 'GPIB0::10::INSTR';

Connect to the function generator.

 fgen

23-47

connect(myFGen);

Specify the channel name from which the function generator produces the waveform.
selectChannel(myFGen, '1');

Configure a standard waveform to be a continuous sine wave.
set(myFGen, 'Waveform', 'sine');
set(myFGen, 'Mode', 'continuous');

Configure the function generator.
% Set the load impedance to 50 Ohms.
set(myFGen, 'OutputImpedance', 50);

% Set the frequency to 2500 Hz.
set(myFGen, 'Frequency', 2500);

% Set the amplitude to 1.2 volts.
set(myFGen, 'Amplitude', 1.2);

% Set the offset to 0.4 volts.
set(myFGen, 'Offset', 0.4);

Communicate with the instrument. For example, output signals. In this example, the
enableOutput function enables the function generator to produce a signal that appears
at the output connector.
% Enable the output of signals.
enableOutput(myFGen);

When you are done, disable the output.
% Disable the output of signals.
disableOutput(myFGen);

Close the session and remove it from the workspace.
disconnect(myFGen);
delete myFGen;
clear myFGen;

These examples used a standard waveform type. For examples using an arbitrary
waveform, see “Generate Standard Waveforms Using the Quick-Control Function
Generator” on page 14-40.

23 Functions — Alphabetical List

23-48

See Also

Topics
“Quick-Control Function Generator Requirements” on page 14-38

Introduced in R2012a

 fgen

23-49

fgetl
Read line of text from instrument and discard terminator

Syntax
tline = fgetl(obj)
[tline,count] = fgetl(obj)
[tline,count,msg] = fgetl(obj)
[tline,count,msg,datagramaddress,datagramport] = fgetl(obj)

Arguments
obj An interface object.
tline The text read from the instrument, excluding the terminator.
count The number of values read, including the terminator.
msg A message indicating if the read operation was unsuccessful.
datagramaddress The datagram address.
datagramport The datagram port.

Description
tline = fgetl(obj) reads one line of text from the instrument connected to obj, and
returns the data to tline. The returned data does not include the terminator with the
text line. To include the terminator, use fgets.

[tline,count] = fgetl(obj) returns the number of values read to count.

[tline,count,msg] = fgetl(obj) returns a warning message to msg if the read
operation was unsuccessful.

[tline,count,msg,datagramaddress,datagramport] = fgetl(obj) returns the
remote address and port from which the datagram originated. These values are returned
only if obj is a UDP object.

23 Functions — Alphabetical List

23-50

Examples
Create the GPIB object g, connect g to a Tektronix TDS 210 oscilloscope, configure g to
complete read operations when the End-Of-String character is read, and write the *IDN?
command with the fprintf function. *IDN? instructs the scope to return identification
information.
g = gpib('ni',0,1);
fopen(g)
g.EOSMode = 'read';
fprintf(g,'*IDN?')

Asynchronously read the identification information from the instrument.
readasync(g)
g.BytesAvailable
ans =
 56

Use fgetl to transfer the data from the input buffer to the MATLAB workspace, and
discard the terminator.
idn = fgetl(g)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

length(idn)
ans =
 55

Disconnect g from the scope, and remove g from memory and the workspace.

fclose(g)
delete(g)
clear g

Tips
Before you can read text from the instrument, it must be connected to obj with the
fopen function. A connected interface object has a Status property value of open. An
error is returned if you attempt to perform a read operation while obj is not connected to
the instrument.

 fgetl

23-51

If msg is not included as an output argument and the read operation was not successful,
then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read —
including the terminator — each time fgetl is issued.

Note You cannot use ASCII values larger than 127 characters. The function is limited to
127 binary characters.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Rules for Completing a Read Operation with fgetl

A read operation with fgetl blocks access to the MATLAB Command Window until

• The terminator is read. For serial port, TCPIP, UDP, and VISA-serial objects, the
terminator is given by the Terminator property. Note that for UDP objects,
DatagramTerminateMode must be off.

For all other interface objects except VISA-RSIB, the terminator is given by the
EOSCharCode property.

• The EOI line is asserted (GPIB and VXI instruments only).
• A datagram has been received (UDP objects only if DatagramTerminateMode is on).
• The time specified by the Timeout property passes.
• The input buffer is filled.

Note You cannot use ASCII values larger than 127 characters. The function is limited to
127 binary characters.

23 Functions — Alphabetical List

23-52

More About the GPIB and VXI Terminator

The EOSCharCode property value is recognized only when the EOSMode property is
configured to read or read&write. For example, if EOSMode is configured to read and
EOSCharCode is configured to LF, then one of the ways that the read operation
terminates is when the line feed character is received.

If EOSMode is none or write, then there is no terminator defined for read operations. In
this case, fgetl will complete execution and return control to the command line when
another criterion, such as a timeout, is met.

See Also
BytesAvailable | EOSCharCode | EOSMode | InputBufferSize | Status | Terminator |
Timeout | ValuesReceived | fgets | fopen | instrhelp

Introduced before R2006a

 fgetl

23-53

fgets
Read line of text from instrument and include terminator

Syntax
tline = fgets(obj)
[tline,count] = fgets(obj)
[tline,count,msg] = fgets(obj)
[tline,count,msg,datagramaddress,datagramport] = fgets(obj)

Arguments
obj An interface object.
tline The text read from the instrument, including the terminator.
count The number of values read.
msg A message indicating that the read operation did not complete

successfully.
datagramaddress The datagram address.
datagramport The datagram port.

Description
tline = fgets(obj) reads one line of text from the instrument connected to obj, and
returns the data to tline. The returned data includes the terminator with the text line.
To exclude the terminator, use fgetl.

[tline,count] = fgets(obj) returns the number of values read to count.

[tline,count,msg] = fgets(obj) returns a warning message to msg if the read
operation was unsuccessful.

23 Functions — Alphabetical List

23-54

[tline,count,msg,datagramaddress,datagramport] = fgets(obj) returns the
remote address and port from which the datagram originated. These values are returned
only if obj is a UDP object.

Examples
Create the GPIB object g, connect g to a Tektronix TDS 210 oscilloscope, configure g to
complete read operations when the End-Of-String character is read, and write the *IDN?
command with the fprintf function. *IDN? instructs the scope to return identification
information.

g = gpib('ni',0,1);
fopen(g)
g.EOSMode = 'read';
fprintf(g,'*IDN?')

Asynchronously read the identification information from the instrument.

readasync(g)
g.BytesAvailable
ans =
 56

Use fgets to transfer the data from the input buffer to the MATLAB workspace, and
include the terminator.

idn = fgets(g)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04
length(idn)
ans =
 56

Disconnect g from the scope, and remove g from memory and the workspace.

fclose(g)
delete(g)
clear g

 fgets

23-55

Tips
Before you can read text from the instrument, it must be connected to obj with the
fopen function. A connected interface object has a Status property value of open. An
error is returned if you attempt to perform a read operation while obj is not connected to
the instrument.

If msg is not included as an output argument and the read operation was not successful,
then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read —
including the terminator — each time fgets is issued.

Note You cannot use ASCII values larger than 127 characters. The function is limited to
127 binary characters.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Rules for Completing a Read Operation with fgets

A read operation with fgets blocks access to the MATLAB command line until

• The terminator is read. For serial port, TCPIP, UDP, and VISA-serial objects, the
terminator is given by the Terminator property. Note that for UDP objects,
DatagramTerminateMode must be off.

For all other interface objects except VISA-RSIB, the terminator is given by the
EOSCharCode property.

• The EOI line is asserted (GPIB and VXI instruments only).
• A datagram has been received (UDP objects only if DatagramTerminateMode is on).
• The time specified by the Timeout property passes.
• The input buffer is filled.

23 Functions — Alphabetical List

23-56

Note You cannot use ASCII values larger than 127 characters. The function is limited to
127 binary characters.

More About the GPIB and VXI Terminator

The EOSCharCode property value is recognized only when the EOSMode property is
configured to read or read&write. For example, if EOSMode is configured to read and
EOSCharCode is configured to LF, then one of the ways that the read operation
terminates is when the line feed character is received.

If EOSMode is none or write, then there is no terminator defined for read operations. In
this case, fgets will complete execution and return control to the command line when
another criterion, such as a timeout, is met.

See Also
BytesAvailable | EOSCharCode | EOSMode | InputBufferSize | Status | Terminator |
Timeout | ValuesReceived | fgetl | fopen | instrhelp | query

Introduced before R2006a

 fgets

23-57

flushinput
Remove data from input buffer

Syntax
flushinput(obj)

Arguments
obj An interface object or an array of interface objects.

Description
flushinput(obj) removes data from the input buffer associated with obj.

Tips
After the input buffer is flushed, the BytesAvailable property is automatically
configured to 0.

If flushinput is called during an asynchronous (nonblocking) read operation, the data
currently stored in the input buffer is flushed and the read operation continues. You can
read data asynchronously from the instrument using the readasync function.

The input buffer is automatically flushed when you connect an object to the instrument
with the fopen function.

You can clear the output buffer with the flushoutput function. You can clear the
hardware buffer for GPIB and VXI instruments with the clrdevice function.

See Also
BytesAvailable | clrdevice | flushoutput | fopen | readasync

23 Functions — Alphabetical List

23-58

Introduced before R2006a

 flushinput

23-59

flushoutput
Remove data from output buffer

Syntax
flushoutput(obj)

Arguments
obj An interface object or an array of interface objects.

Description
flushoutput(obj) removes data from the output buffer associated with obj.

Tips
After the output buffer is flushed, the BytesToOutput property is automatically
configured to 0.

If flushoutput is called during an asynchronous (nonblocking) write operation, the
data currently stored in the output buffer is flushed and the write operation is aborted.
Additionally, the callback function specified for the OutputEmptyFcn property is
executed. You can write data asynchronously to the instrument using the fprintf or
fwrite functions.

The output buffer is automatically flushed when you connect an object to the instrument
with the fopen function.

You can clear the input buffer with the flushinput function. You can clear the
hardware buffer for GPIB and VXI instruments with the clrdevice function.

23 Functions — Alphabetical List

23-60

See Also
BytesToOutput | OutputEmptyFcn | clrdevice | flushinput | fopen | fprintf |
fwrite

Introduced before R2006a

 flushoutput

23-61

fopen
Connect interface object to instrument

Syntax
fopen(obj)

Arguments
obj An interface object or an array of interface objects.

Description
fopen(obj) connects obj to the instrument.

Examples
This example creates the GPIB object g, connects g to the instrument using fopen,
writes and reads text data, and then disconnects g from the instrument.

g = gpib('ni',0,1);
fopen(g)
fprintf(g,'*IDN?')
idn = fscanf(g);
fclose(g)

Tips
Before you can perform a read or write operation, obj must be connected to the
instrument with the fopen function. When obj is connected to the instrument

• Data remaining in the input buffer or the output buffer is flushed.

23 Functions — Alphabetical List

23-62

• The Status property is set to open.
• The BytesAvailable, ValuesReceived, ValuesSent, and BytesToOutput

properties are set to 0.

An error is returned if you attempt to perform a read or write operation while obj is not
connected to the instrument. You can connect only one interface object to a given
instrument. For example, on a Windows machine you can connect only one serial port
object to an instrument associated with the COM1 port. Similarly, you can connect only
one GPIB object to an instrument with a given board index, primary address, and
secondary address.

Some properties are read-only while the interface object is connected, and must be
configured before using fopen. Examples include InputBufferSize and
OutputBufferSize. Refer to the property reference pages or use the propinfo function
to determine which properties have this constraint.

The values for some properties are verified only after obj is connected to the instrument.
If any of these properties are incorrectly configured, an error is returned when fopen is
issued and obj is not connected to the instrument. Properties of this type include
BaudRate and SecondaryAddress, and are associated with instrument settings.

See Also
BytesAvailable | BytesToOutput | Status | ValuesReceived | ValuesSent | fclose |
instrhelp | propinfo

Introduced before R2006a

 fopen

23-63

fprintf
Write text to instrument

Syntax
fprintf(obj,'cmd')
fprintf(obj,'format','cmd')
fprintf(obj,'cmd','mode')
fprintf(obj,'format','cmd','mode')

Arguments
obj An interface object.
'cmd' The string written to the instrument.
'format' C language conversion specification.
'mode' Specifies whether data is written synchronously or

asynchronously.

Description
fprintf(obj,'cmd') writes the string cmd to the instrument connected to obj. The
default format is %s\n. The write operation is synchronous and blocks the command line
until execution is complete.

fprintf(obj,'format','cmd') writes the string using the format specified by
format.

format is a C language conversion specification. Conversion specifications involve the %
character and the conversion characters d, i, o, u, x, X, f, e, E, g, G, c, and s. Refer to the
sprintf file I/O format specifications or a C manual for more information.

fprintf(obj,'cmd','mode') writes the string with command-line access specified by
mode. If mode is sync, cmd is written synchronously and the command line is blocked. If

23 Functions — Alphabetical List

23-64

mode is async, cmd is written asynchronously and the command line is not blocked. If
mode is not specified, the write operation is synchronous.

fprintf(obj,'format','cmd','mode') writes the string using the specified format.
If mode is sync, cmd is written synchronously. If mode is async, cmd is written
asynchronously.

Examples
Create the serial port object s, connect s on a Windows machine to a Tektronix TDS 210
oscilloscope, and write the RS232? command with the fprintf function. RS232?
instructs the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')
settings = fscanf(s)
settings =
9600;1;0;NONE;LF

Because the default format for fprintf is %s\n, the terminator specified by the
Terminator property was automatically written. However, in some cases you might
want to suppress writing the terminator. To do so, you must explicitly specify a format
for the data that does not include the terminator, or configure the terminator to empty.

fprintf(s,'%s','RS232?')

Tips
Before you can write text to the instrument, it must be connected to obj with the fopen
function. A connected interface object has a Status property value of open. An error is
returned if you attempt to perform a write operation while obj is not connected to the
instrument.

The ValuesSent property value is increased by the number of values written each time
fprintf is issued.

An error occurs if the output buffer cannot hold all the data to be written. You can
specify the size of the output buffer with the OutputBufferSize property.

 fprintf

23-65

fprintf function will return an error message if you set the flowcontrol property to
hardware on a serial object, and a hardware connection is not detected. This occurs if a
device is not connected, or a connected device is not asserting that is ready to receive
data. Check you remote device's status and flow control settings to see if hardware flow
control is causing errors in MATLAB.

Note If you want to check to see if the device is asserting that it is ready to receive data,
set the FlowControl to none. Once you connect to the device check the PinStatus
structure for ClearToSend. If ClearToSend is off, there is a problem on the remote
device side. If ClearToSend is on, there is a hardware FlowControl device prepared to
receive data and you can execute fprintf.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Synchronous Versus Asynchronous Write Operations

By default, text is written to the instrument synchronously and the command line is
blocked until the operation completes. You can perform an asynchronous write by
configuring the mode input argument to be async. For asynchronous writes,

• The BytesToOutput property value is continuously updated to reflect the number of
bytes in the output buffer.

• The callback function specified for the OutputEmptyFcn property is executed when
the output buffer is empty.

You can determine whether an asynchronous write operation is in progress with the
TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail in
“Synchronous Versus Asynchronous Write Operations” on page 3-18.

Rules for Completing a Write Operation with fprintf

A write operation using fprintf completes when

23 Functions — Alphabetical List

23-66

• The specified data is written.
• The time specified by the Timeout property passes.

Rules for Writing the Terminator

For serial port, TCPIP, UDP, and VISA-serial objects, all occurrences of \n in cmd are
replaced with the Terminator property value. Therefore, when using the default format
%s\n, all commands written to the instrument will end with this property value.

For GPIB, VISA-GPIB, VISA-VXI, and VISA-GPIB-VXI objects, all occurrences of \n in
cmd are replaced with the EOSCharCode property value if the EOSMode property is set to
write or read&write. For example, if EOSMode is set to write and EOSCharCode is set
to LF, then all occurrences of \n are replaced with a line feed character. Additionally, for
GPIB objects, the End Or Identify (EOI) line is asserted when the terminator is written
out.

Note The terminator required by your instrument will be described in its documentation.

See Also
BytesToOutput | EOSCharCode | EOSMode | OutputBufferSize | OutputEmptyFcn |
Status | TransferStatus | ValuesSent | fopen | fwrite | instrhelp | query |
sprintf

Introduced before R2006a

 fprintf

23-67

fread
Read binary data from instrument

Syntax
A = fread(obj)
A = fread(obj,size)
A = fread(obj,size,'precision')
[A,count] = fread(...)
[A,count,msg] = fread(...)
[A,count,msg,datagramaddress] = fread(obj,...)
[A,count,msg,datagramaddress,datagramport] = fread(obj,...)

Arguments
obj An interface object.
size The number of values to read.
'precision' The number of bits read for each value, and the interpretation of

the bits as character, integer, or floating-point values.
A Binary data returned from the instrument.
count The number of values read.
msg A message indicating if the read operation was unsuccessful.
datagramaddress The address of the datagram sender.
datagramport The port of the datagram sender.

Description
A = fread(obj) and A = fread(obj,size) read binary data from the instrument
connected to obj, and returns the data to A. The maximum number of values to read is
specified by size. If size is not specified, the maximum number of values to read is
determined by the object's InputBufferSize property. Valid options for size are:

23 Functions — Alphabetical List

23-68

n Read at most n values into a column vector.
[m,n] Read at most m–by–n values filling an m–by–n matrix in column

order.

size cannot be inf, and an error is returned if the specified number of values cannot be
stored in the input buffer. You specify the size, in bytes, of the input buffer with the
InputBufferSize property. A value is defined as a byte multiplied by the precision
(see below).

If obj is a UDP object and DatagramTerminateMode is off, the size value is honored.
If size is less than the length of the datagram, only size values are read. If size is
greater than the length of the datagram, a warning is issued stating that a complete
datagram was read before size values was reached.

A = fread(obj,size,'precision') reads binary data with precision specified by
precision.

precision controls the number of bits read for each value and the interpretation of
those bits as integer, floating-point, or character values. If precision is not specified,
uchar (an 8-bit unsigned character) is used. By default, numeric values are returned in
double-precision arrays. The supported values for precision are listed below in Tips on
page 23-69.

[A,count] = fread(...) returns the number of values read to count.

[A,count,msg] = fread(...) returns a warning message to msg if the read
operation was unsuccessful.

[A,count,msg,datagramaddress] = fread(obj,...) returns the datagram
address to datagramaddress if obj is a UDP object. If more than one datagram is read,
datagramaddress is ' '.

[A,count,msg,datagramaddress,datagramport] = fread(obj,...) returns the
datagram port to datagramport if obj is a UDP object. If more than one datagram is
read, datagramport is [].

Tips
Before you can read data from the instrument, it must be connected to obj with the
fopen function. A connected interface object has a Status property value of open. An

 fread

23-69

error is returned if you attempt to perform a read operation while obj is not connected to
the instrument.

If msg is not included as an output argument and the read operation was not successful,
then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read, each
time fread is issued.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Rules for Completing a Binary Read Operation

A read operation with fread blocks access to the MATLAB Command Window until

• The specified number of values is read. For UDP objects, DatagramTerminateMode
must be off.

• The time specified by the Timeout property passes.
• A datagram is received (for UDP objects only when DatagramTerminateMode is on).
• The input buffer is filled.
• The EOI line is asserted (GPIB and VXI instruments only).
• The EOSCharCode is received (GPIB and VXI instruments only).

Note Set the terminator property to '' (null), if appropriate, to ensure efficient
throughput of binary data.

More About the GPIB and VXI Terminator

The EOSCharCode property value is recognized only when the EOSMode property is
configured to read or read&write. For example, if EOSMode is configured to read and
EOSCharCode is configured to LF, then one of the ways that the read operation
terminates is when the line feed character is received.

23 Functions — Alphabetical List

23-70

If EOSMode is none or write, then there is no terminator defined for read operations. In
this case, fread will complete execution and return control to the command when
another criterion, such as a timeout, is met.

Supported Precisions

The supported values for precision are listed below.
Data Type Precision Interpretation
Character uchar 8-bit unsigned character

schar 8-bit signed character
char 8-bit signed or unsigned character

Integer int8 8-bit integer
int16 16-bit integer
int32 32-bit integer
uint8 8-bit unsigned integer
uint16 16-bit unsigned integer
uint32 32-bit unsigned integer
short 16-bit integer
int 32-bit integer
long 32- or 64-bit integer
ushort 16-bit unsigned integer
uint 32-bit unsigned integer
ulong 32- or 64-bit unsigned integer

Floating-point single 32-bit floating point
float32 32-bit floating point
float 32-bit floating point
double 64-bit floating point
float64 64-bit floating point

 fread

23-71

See Also
BytesAvailable | InputBufferSize | Status | ValuesReceived | fgetl | fgets | fopen
| fscanf | instrhelp

Topics
“Read and Write Binary Data over TCP/IP” on page 7-26
“Read and Write Binary Data over UDP” on page 7-47

Introduced before R2006a

23 Functions — Alphabetical List

23-72

fscanf
Read data from instrument, and format as text

Syntax
A = fscanf(obj)
A = fscanf(obj,'format')
A = fscanf(obj,'format',size)
[A,count] = fscanf(...)
[A,count,msg] = fscanf(...)
[A,count,msg,datagramaddress] = fscanf(obj,...)
[A,count,msg,datagramaddress,datagramport] = fscanf(obj,...)

Arguments
obj An interface object.
'format' C language conversion specification.
size The number of values to read.
A Data read from the instrument and formatted as text.
count The number of values read.
msg A message indicating if the read operation was unsuccessful.
datagramaddress The address of the datagram sender.
datagramport The port of the datagram sender.

Description
A = fscanf(obj) reads data from the instrument connected to obj, and returns it to A.
The data is converted to text using the %c format.

A = fscanf(obj,'format') reads data and converts it according to format.

 fscanf

23-73

format is a C language conversion specification. Conversion specifications involve the %
character and the conversion characters d, i, o, u, x, X, f, e, E, g, G, c, and s. Refer to the
sscanf file I/O format specifications or a C manual for more information.

A = fscanf(obj,'format',size) reads the number of values specified by size.
Valid options for size are
n Read at most n values into a column vector.
[m,n] Read at most m–by–n values filling an m–by–n matrix in column

order.

size cannot be inf, and an error is returned if the specified number of values cannot be
stored in the input buffer. If size is not of the form [m,n], and a character conversion is
specified, then A is returned as a row vector. You specify the size, in bytes, of the input
buffer with the InputBufferSize property. An ASCII value is one byte.

If obj is a UDP object and DatagramTerminateMode is off, the size value is honored.
If size is less than the length of the datagram, only size values are read. If size is
greater than the length of the datagram, a warning is issued stating that a complete
datagram was read before size values was reached.

[A,count] = fscanf(...) returns the number of values read to count.

[A,count,msg] = fscanf(...) returns a warning message to msg if the read
operation did not complete successfully.

[A,count,msg,datagramaddress] = fscanf(obj,...) returns the datagram
address to datagramaddress if obj is a UDP object. If more than one datagram is read,
datagramaddress is ' '.

[A,count,msg,datagramaddress,datagramport] = fscanf(obj,...) returns
the datagram port to datagramport if obj is a UDP object. If more than one datagram
is read, datagramport is [].

Examples
Create the serial port object s on a Windows machine and connect s to a Tektronix TDS
210 oscilloscope, which is displaying a sine wave.

23 Functions — Alphabetical List

23-74

s = serial('COM1');
fopen(s)

Use the fprintf function to configure the scope to measure the peak-to-peak voltage of
the sine wave, return the measurement type, and return the peak-to-peak voltage.
fprintf(s,'MEASUREMENT:IMMED:TYPE PK2PK')
fprintf(s,'MEASUREMENT:IMMED:TYPE?')
fprintf(s,'MEASUREMENT:IMMED:VAL?')

Because the default value for the ReadAsyncMode property is continuous, data
associated with the two query commands is automatically returned to the input buffer.
s.BytesAvailable
ans =
 13

Use fscanf to read the measurement type. The operation will complete when the first
terminator is read.
meas = fscanf(s)
meas =
PK2PK

Use fscanf to read the peak-to-peak voltage as a floating-point number, and exclude the
terminator.
pk2pk = fscanf(s,'%e',6)
pk2pk =
 2.0200

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

Tips
Before you can read data from the instrument, it must be connected to obj with the
fopen function. A connected interface object has a Status property value of open. An
error is returned if you attempt to perform a read operation while obj is not connected to
the instrument.

 fscanf

23-75

If msg is not included as an output argument and the read operation was not successful,
then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read —
including the terminator — each time fscanf is issued.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Rules for Completing a Read Operation with fscanf

A read operation with fscanf blocks access to the MATLAB command line until

• The terminator is read. For serial port, TCPIP, UDP, and VISA-serial objects, the
terminator is given by the Terminator property. If Terminator is empty, fscanf
will complete execution and return control when another criterion is met. For UDP
objects, DatagramTerminateMode must be off.

For all other interface objects, the terminator is given by the EOSCharCode property.
• The time specified by the Timeout property passes.
• The number of values specified by size is read. For UDP objects,

DatagramTerminateMode must be off.
• A datagram is received (for UDP objects only when DatagramTerminateMode is on).
• The input buffer is filled.
• The EOI line is asserted (GPIB and VXI instruments only).

More About the GPIB and VXI Terminator

The EOSCharCode property value is recognized only when the EOSMode property is
configured to read or read&write. For example, if EOSMode is configured to read and
EOSCharCode is configured to LF, then one of the ways that the read operation
terminates is when the line feed character is received.

23 Functions — Alphabetical List

23-76

If EOSMode is none or write, then there is no terminator defined for read operations. In
this case, fscanf will complete execution and return control to the command when
another criterion, such as a timeout, is met.

See Also
BytesAvailable | BytesAvailableFcn | EOSCharCode | EOSMode | InputBufferSize |
Status | Terminator | Timeout | TransferStatus | fgetl | fgets | fopen | fread |
instrhelp | scanstr | sscanf

Introduced before R2006a

 fscanf

23-77

fwrite
Write binary data to instrument

Syntax
fwrite(obj,A)
fwrite(obj,A,'precision')
fwrite(obj,A,'mode')
fwrite(obj,A,'precision','mode')

Arguments
obj An interface object.
A The binary data written to the instrument.
'precision' The number of bits written for each value, and the interpretation of the

bits as character, integer, or floating-point values.
'mode' Specifies whether data is written synchronously or asynchronously.

Description
fwrite(obj,A) writes the binary data A to the instrument connected to obj.

fwrite(obj,A,'precision') writes binary data with precision specified by
precision.

precision controls the number of bits written for each value and the interpretation of
those bits as integer, floating-point, or character values. If precision is not specified,
uchar (an 8-bit unsigned character) is used. The support values for precision are
listed in “Supported Precisions” on page 23-71.

fwrite(obj,A,'mode') writes binary data with command line access specified by
mode. If mode is sync, A is written synchronously and the command line is blocked. If
mode is async, A is written asynchronously and the command line is not blocked. If mode
is not specified, the write operation is synchronous.

23 Functions — Alphabetical List

23-78

fwrite(obj,A,'precision','mode') writes binary data with precision specified by
precision and command-line access specified by mode.

Tips
Before you can write data to the instrument, it must be connected to obj with the fopen
function. A connected interface object has a Status property value of open. An error is
returned if you attempt to perform a write operation while obj is not connected to the
instrument.

The ValuesSent property value is increased by the number of values written each time
fwrite is issued.

An error occurs if the output buffer cannot hold all the data to be written. You can
specify the size of the output buffer with the OutputBufferSize property.

fwrite will return an error message if you set the FlowControl property to hardware
on a serial object, and a hardware connection is not detected. This occurs if a device is not
connected, or a connected device is not asserting that is ready to receive data. Check you
remote device's status and flow control settings to see if hardware flow control is causing
errors in MATLAB.

Note If you want to check to see if the device is asserting that it is ready to receive data,
set the FlowControl to none. Once you connect to the device check the PinStatus
structure for ClearToSend. If ClearToSend is off, there is a problem on the remote
device side. If ClearToSend is on, there is a hardware FlowControl device prepared to
receive data and you can execute fwrite.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

 fwrite

23-79

Synchronous Versus Asynchronous Write Operations

By default, data is written to the instrument synchronously and the command line is
blocked until the operation completes. You can perform an asynchronous write by
configuring the mode input argument to be async. For asynchronous writes,

• The BytesToOutput property value is continuously updated to reflect the number of
bytes in the output buffer.

• The callback function specified for the OutputEmptyFcn property is executed when
the output buffer is empty.

You can determine whether an asynchronous write operation is in progress with the
TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail in
“Synchronous Versus Asynchronous Write Operations” on page 3-18.

Rules for Completing a Write Operation with fwrite

A binary write operation using fwrite completes when

• The specified data is written.
• The time specified by the Timeout property passes.

Note The Terminator and EOSCharCode properties are not used with binary write
operations.

Supported Precisions

The supported values for precision are listed below.
Data Type Precision Interpretation
Character uchar 8-bit unsigned character

schar 8-bit signed character
char 8-bit signed or unsigned

character

23 Functions — Alphabetical List

23-80

Data Type Precision Interpretation
Integer int8 8-bit integer

int16 16-bit integer
int32 32-bit integer
uint8 8-bit unsigned integer
uint16 16-bit unsigned integer
uint32 32-bit unsigned integer
short 16-bit integer
int 32-bit integer
long 32- or 64-bit integer
ushort 16-bit unsigned integer
uint 32-bit unsigned integer
ulong 32- or 64-bit unsigned integer

Floating-point single 32-bit floating point
float32 32-bit floating point
float 32-bit floating point
double 64-bit floating point
float64 64-bit floating point

See Also
ValuesSent | OutputBufferSize | OutputEmptyFcn | Status | Timeout |
TransferStatus | fopen | fprintf | instrhelp

Topics
“Read and Write Binary Data over TCP/IP” on page 7-26
“Read and Write Binary Data over UDP” on page 7-47

Introduced before R2006a

 fwrite

23-81

get
Instrument object properties

Syntax
get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Arguments
obj An instrument object or an array of instrument objects.
'PropertyName' A property name or a cell array of property names.
out A single property value, a structure of property values, or a cell

array of property values.

Description
get(obj) returns all property names and their current values to the command line for
obj. The properties are divided into two sections. The base properties are listed first and
the object-specific properties are listed second.

out = get(obj) returns the structure out where each field name is the name of a
property of obj, and each field contains the value of that property.

out = get(obj,'PropertyName') returns the value out of the property specified by
PropertyName for obj. If PropertyName is replaced by a 1-by-n or n-by-1 cell array of
character vectors containing property names, then get returns a 1-by-n cell array of
values to out. If obj is an array of instrument objects, then out will be an m-by-n cell
array of property values where m is equal to the length of obj and n is equal to the
number of properties specified.

23 Functions — Alphabetical List

23-82

Examples
This example illustrates some of the ways you can use get to return property values for
the GPIB object g.

g = gpib('ni',0,1);
out1 = get(g);
out2 = get(g,{'PrimaryAddress','EOSCharCode'});
get(g,'EOIMode')
ans =
on

Tips
When specifying a property name, you can do so without regard to case, and you can
make use of property name completion. For example, if g is a GPIB object, then these
commands are all valid.

out = get(g,'EOSMode');
out = get(g,'eosmode');
out = get(g,'EOSM');

See Also
instrhelp | propinfo | set

Introduced before R2006a

 get

23-83

geterror
Check and return error message from instrument

Syntax
msg = geterror(obj)

Arguments
obj A device object.
msg The error message returned from the instrument.

Description
msg = geterror(obj) checks the instrument associated with the device object
specified by obj for an error message. If an error message exists, it is returned to msg.
The interpretation of msg will vary based on the instrument.

Introduced before R2006a

23 Functions — Alphabetical List

23-84

getWaveform
Returns waveform displayed on scope

Syntax
w = getWaveform(myScope);
w = getWaveform(myScope, 'acquisition', true);
w = getWaveform(myScope, 'acquisition', false);

Description
w = getWaveform(myScope); returns waveform(s) displayed on the scope screen.
Retrieves the waveform(s) from enabled channel(s). By default it downloads the captured
waveform from the scope without acquisition.

w = getWaveform(myScope, 'acquisition', true); initiates an acquisition and
returns waveform(s) from the oscilloscope.

w = getWaveform(myScope, 'acquisition', false); gets waveform from the
enabled channel without acquisition

This function can only be used with the oscilloscope object. You can use the
getWaveform function to download the current waveform from the scope or to initiate
the waveform and capture it. See the examples below for the three possible use cases.

Note You should now use the readWaveform function. In R2017a the name changed from
getWaveform to readWaveform. The getWaveform function will continue to be supported.

Examples
Use this example if you have captured the waveform(s) using the oscilloscope's front
panel and want to download it to the Instrument Control Toolbox for further analysis.

 getWaveform

23-85

 o = oscilloscope()
 set (o, 'Resource', 'instrumentResourceString');
 connect(o);
 w = getWaveform(o);

Replace 'instrumentResourceString' with the resource string for your instrument.

Use this example to get the waveform from a circuit output (without configuring the
trigger) and download it to the Instrument Control Toolbox to check it.

 o = oscilloscope()
 set (o, 'Resource', 'instrumentResourceString');
 connect(o);
 enableChannel(o,'Channel1');
 w = getWaveform(o);

Replace 'instrumentResourceString' with the resource string for your instrument.

Use this example to capture synchronized input/output signals of a filter circuit when a
certain trigger condition is met, stop the acquisition, and download the waveforms to the
Instrument Control Toolbox.

 o = oscilloscope()
 set (o, 'Resource', 'instrumentResourceString');
 connect(o);
 set (o, 'TriggerMode','normal');
 set (o, 'enableChannel', {'Channel1','Channel2'});
 [w1, w2] = getWaveform(o, 'acqusition', true);

Replace 'instrumentResourceString' with the resource string for your instrument.

See Also

Topics
“The Quick-Control Interfaces” on page 14-25

Introduced in R2011b

23 Functions — Alphabetical List

23-86

gpib
Create GPIB object

Syntax
obj = gpib('vendor',boardindex,primaryaddress)
obj =
gpib('vendor',boardindex,primaryaddress,'PropertyName',PropertyValue
)

Arguments
'vendor' The vendor name.
boardindex The GPIB board index.
primaryaddress The instrument primary address.
'PropertyName' A GPIB property name.
'PropertyValue' A property value supported by PropertyName.
obj The GPIB object.

Description
obj = gpib('vendor',boardindex,primaryaddress) creates the GPIB object obj
associated with the board specified by boardindex, and the instrument specified by
primaryaddress. The GPIB hardware is supplied by vendor. Supported vendors are
given below.
Vendor Description
agilent Agilent Technologies hardware
ics ICS Electronics hardware
mcc Measurement Computing hardware
ni National Instruments hardware

 gpib

23-87

Vendor Description
adlink ADLINK Technology hardware

obj =
gpib('vendor',boardindex,primaryaddress,'PropertyName',PropertyValue
) creates the GPIB object with the specified property names and property values. If an
invalid property name or property value is specified, an error is returned and obj is not
created.

Examples
This example creates the GPIB object g1 associated with a National Instruments board
at index 0 with primary address 1, and then connects g1 to the instrument.

g1 = gpib('ni',0,1);
fopen(g1)

The Type, Name, BoardIndex, and PrimaryAddress properties are automatically
configured.

g1.Type
ans =
 gpib

g1.Name
ans =
 GPIB0-1

g1.BoardIndex
ans =
 0

g1.PrimaryAddress
ans =
 1

To specify the secondary address during object creation,

g2 = gpib('ni',0,1,'SecondaryAddress',96);

23 Functions — Alphabetical List

23-88

Tips
At any time, you can use the instrhelp function to view a complete listing of properties
and functions associated with GPIB objects.

instrhelp gpib

When you create a GPIB object, these property value are automatically configured:

• Type is given by gpib.
• Name is given by concatenating GPIB with the board index and the primary address

specified in the gpib function. If the secondary address is specified, then this value is
also used in Name.

• BoardIndex and PrimaryAddress are given by the values supplied to the gpib
function.

Note You do not use the GPIB board primary address in the GPIB object constructor
syntax. You use the board index, and the instrument address.

You can specify the property names and property values using any format supported by
the set function. For example, you can use property name/property value cell array
pairs. Additionally, you can specify property names without regard to case, and you can
make use of property name completion. For example, these commands are all valid:

g = gpib('ni',0,1,'SecondaryAddress',96);
g = gpib('ni',0,1,'secondaryaddress',96);
g = gpib('ni',0,1,'SECOND',96);

Before you can communicate with the instrument, it must be connected to obj with the
fopen function. A connected GPIB object has a Status property value of open. An error
is returned if you attempt to perform a read or write operation while obj is not
connected to the instrument.

You cannot connect multiple GPIB objects to the same instrument. A GPIB instrument is
uniquely identified by its board index, primary address, and secondary address.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a

 gpib

23-89

property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
BoardIndex | Name | PrimaryAddress | SecondaryAddress | Status | Type | fopen |
instrhelp | instrhwinfo

Introduced before R2006a

23 Functions — Alphabetical List

23-90

i2c
Create I2C object

Syntax
I = i2c('Vendor', BoardIndex, RemoteAddress)

Description
I2C, or Inter-Integrated Circuit, is a chip-to-chip interface supporting two-wire
communication. Instrument Control Toolbox I2C support lets you open connections with
individual chips and to read and write over the connections to individual chips using
either an Aardvark host adaptor or a NI-845x adaptor board.

I = i2c('Vendor', BoardIndex, RemoteAddress) constructs an i2c object
associated with Vendor, BoardIndex, and RemoteAddress. Vendor must be set to
either 'aardvark', for use with a Total Phase Aardvark adaptor, or to 'NI845x', for
use with a NI-845x adaptor board, to use this interface. BoardIndex specifies the board
index of the hardware and is usually 0. RemoteAddress specifies the remote address of
the hardware. Note that to specify the remote address of 50 hex, you need to use the
hex2dec function as shown in Examples.

The primary use cases involve the fread and fwrite functions. To identify I2C devices
in the Instrument Control Toolbox, use the instrhwinfo function on the I2C interface,
called i2c.

You can use these properties with the i2c object:
Property Description
BitRate Must be a positive, nonzero value specified in kHz. The

adaptor and chips determine the rate. The default is 100 kHz
for both the Aardvark and NI-845x adaptors.

 i2c

23-91

Property Description
TargetPower Aardvark only. Can be specified as none or both. The value

both means to power both lines, if supported. The value
none means power no lines, and is the default value.

PullupResistors Can be specified as none or both. The value both enables 2k
pullup resistors to protect hardware in the I2C device, if
supported. This is the default value.

Note that devices may differ in their use of pullups. The
Aardvark adaptor and the NI-8452 have internal pullup
resistors to tie both bus lines to VDD and can be
programmatically set. The NI-8451 does not have internal
pullup resistors that can be programmatically set, and so
require external pullups. You should consult your device
documentation to ensure that the correct pullups have been
used.

BoardSerial Unique identifier of the I2C master communication device.
Vendor Use to create i2c object. Must be set to aardvark, for use

with Aardvark adaptor, or NI845x for use with the NI-845x
adaptor.

BoardIndex Use to create i2c object. Specifies the board index of the
hardware. Usually set to 0.

RemoteAddress Use to create i2c object. Specifies the remote address of the
hardware. Specified as a character vector when you create
the i2c object. For example, to specify the remote address of
50 hex, use '50h'.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

23 Functions — Alphabetical List

23-92

Examples
Aardvark Example

This example shows how to communicate with an EEPROM chip on a circuit board, with
an address of 50 hex and a board index of 0, using the Aardvark adaptor.

Ensure that the Aardvark adaptor is installed so that you can use the i2c interface, and
then look at the adaptor properties.

 instrhwinfo('i2c')
 instrhwinfo('i2c', 'Aardvark')

Construct an i2c object called I using Vendor aardvark, with BoardIndex of 0, and
RemoteAddress of 50h. Note that to specify the remote address of 50 hex, you need to
use the hex2dec function as shown.

I = i2c('aardvark',0,hex2dec('50'));

Connect to the chip.

fopen(I);

Write 'Hello World!' to the EEPROM chip. Data is written page-by-page in I2C. Each
page contains eight bytes. The page address needs to be mentioned before every byte of
data written.

The first byte of the string 'Hello World!' is 'Hello Wo'. Its page address is 0.

fwrite(I,[0 'Hello Wo']);

The second byte of the string 'Hello World!' is 'rld!'. Its page address is 8.

fwrite(I,[8 'rld!']);

A zero needs to be written to the i2c object, to start reading from the first byte of first
page.

fwrite(I,0);

Read data back from the chip using the fread function. The chip returns the characters
it was sent.

char(fread(I,16))'

 i2c

23-93

Disconnect the I2C device.

 fclose(I);

Clean up by clearing the object.

 clear('I');

NI-845x Example

This example shows how to communicate with a sensor chip on a circuit board, with an
address of 53 hex and a board index of 0, using the NI-845x adaptor. In this case, the
NI-845x adaptor board is plugged into the computer (via the USB port), and a circuit
board containing the sensor chip is connected to the host adaptor board via wires.

Ensure that the NI-845x adaptor is installed so that you can use the i2c interface, and
then look at the adaptor properties.

 instrhwinfo('i2c')
 instrhwinfo('i2c', 'NI845x')

Construct an i2c object called i2cobj using Vendor NI845x, with BoardIndex of 0,
and RemoteAddress of 53h.

i2cobj = i2c('NI845x', 0, '53h');

Connect to the chip.

fopen(i2cobj)

Write to the sensor chip. You need to read the documentation or data sheet of the chip in
order to know what the remote address is and other information about the chip. In this
case, the chip’s registry can be opened by sending it a 0.

fwrite(i2cobj, 0)

Read data back from the chip using the fread function. By sending it one byte, you can
read back the device ID registry. In the case of this chip, the read-only device ID registry
is 229. Therefore, that is what is returned when you send the byte.

fread(i2cobj, 1)

ans =

 229

23 Functions — Alphabetical List

23-94

Disconnect the I2C device.

 fclose(i2cobj);

Clean up by deleting and clearing the object.

 delete(i2cobj);
 clear('i2cobj');

See Also
“I2C Interface Overview” on page 9-2

“Configuring I2C Communication” on page 9-4

“Transmitting Data Over the I2C Interface” on page 9-8

“Using Properties on an I2C Object” on page 9-14

Introduced in R2012a

 i2c

23-95

icdevice
Create device object

Syntax
obj = icdevice('driver', hwobj)
obj = icdevice('driver', 'RsrcName')
obj = icdevice('driver')
obj = icdevice('driver', hwobj, 'P1', V1, 'P2', V2,...)
obj = icdevice('driver', 'RsrcName','P1', V1, 'P2', V2,...)
obj = icdevice('driver','P1', V1, 'P2', V2,...)

Arguments
driver A MATLAB instrument driver.
hwobj An interface object.
RsrcName VISA resource name.
'P1', 'P2',... Device-specific property names.
V1, V2,... Property values supported by corresponding P1, P2,....
obj A device object.

Description
obj = icdevice('driver', hwobj) creates the device object obj. The instrument-
specific information is defined in the MATLAB interface instrument driver, driver.
Communication to the instrument is done through the interface object, hwobj. The
interface object can be a serial port, GPIB, VISA, TCPIP, or UDP object. If driver does
not exist or if hwobj is invalid, the device object is not created.

Device objects may also be used with VXIplug&play and Interchangeable Virtual
Instrument (IVI) drivers. To use these drivers, you must first have a MATLAB
instrument driver wrapper for the underlying VXIplug&play or IVI driver. If the

23 Functions — Alphabetical List

23-96

MATLAB instrument driver wrapper does not already exist, it may be created using
makemid or midedit. Note that makemid or midedit only needs to be used once to
create the MATLAB instrument driver wrapper.

obj = icdevice('driver', 'RsrcName') creates a device object obj, using the
MATLAB instrument driver, driver. The specified driver must be a MATLAB
VXIplug&play instrument driver or MATLAB IVI instrument driver. Communication to
the instrument is done through the resource specified by rsrcname. For example, all
VXIplug&play, and many IVI drivers require VISA resource names for rsrcname.

obj = icdevice('driver') constructs a device object obj, using the MATLAB
instrument driver, driver. The specified driver must be a MATLAB IVI instrument
driver, and the underlying IVI driver must be referenced using a logical name.

obj = icdevice('driver', hwobj, 'P1', V1, 'P2', V2,...), obj =
icdevice('driver', 'RsrcName','P1', V1, 'P2', V2,...), and obj =
icdevice('driver','P1', V1, 'P2', V2,...), construct a device object, obj,
with the specified property values. If an invalid property name or property value is
specified, the object will not be created.

Note that the parameter-value pairs can be in any format supported by the set function:
parameter-value character vector pairs, structures, and parameter-value cell array pairs.

Additionally, you can specify property names without regard to case, and you can make
use of property name completion. For example, these commands are all valid and
equivalent:

d = icdevice('tektronix_tds210',g,'ObjectVisibility','on');
d = icdevice('tektronix_tds210',g,'objectvisibility','on');
d = icdevice('tektronix_tds210',g,'ObjectVis','on');

Note About Deploying Code

When using IVI-C or VXI Plug&Play drivers, executing your code will generate
additional file(s) in the folder specified by executing the following code at the MATLAB
prompt:

fullfile(tempdir,'ICTDeploymentFiles',sprintf('R%s',version('-release')))

On all supported platforms, a file with the name
MATLABPrototypeFor<driverName>.m is generated, where <driverName> the name
of the IVI-C or VXI Plug&Play driver. With 64-bit MATLAB on Windows, a second file by

 icdevice

23-97

the name <driverName>_thunk_pcwin64.dll is generated. When creating your
deployed application or shared library, manually include these generated files. If using
the icdevice function, remember to also manually include the MDD-file in the deployed
application or shared library. For more information on including additional files refer to
the MATLAB Compiler documentation.

Examples
The first example creates a device object for a Tektronix TDS 210 oscilloscope that is
connected to a MCC GPIB board, using a MATLAB interface object and MATLAB
interface instrument driver.

g = gpib('mcc',0,2);
d = icdevice('tektronix_tds210',g);

Connect to the instrument.

connect(d);

List the oscilloscope settings that can be configured.

props = set(d);

Get the current configuration of the oscilloscope.

values = get(d);

Disconnect from the instrument and clean up.

disconnect(d);
delete([d g]);

The second example creates a device object for a Tektronix TDS 210 oscilloscope using a
MATLAB VXIplug&play instrument driver.

This example assumes that the 'tktds5k' VXIplug&play driver is installed on your
system.

This first step is necessary only if a MATLAB VXIplug&play instrument driver for the
tktds5k does not exist on your system.

makemid('tktds5k', 'Tktds5kMATLABDriver');

23 Functions — Alphabetical List

23-98

Construct a device object that uses the VXIplug&play driver. The instrument is assumed
to be located at GPIB primary address 2.

d = icdevice('Tktds5kMATLABDriver', 'GPIB0::2::INSTR');

Connect to the instrument.

connect(d);

List the oscilloscope settings that can be configured.

props = set(d);

Get the current configuration of the oscilloscope.

values = get(d);

Disconnect from the instrument and clean up.

disconnect(d);
delete(d);

Tips
At any time, you can use the instrhelp function to view a complete listing of properties
and functions associated with device objects.

instrhelp icdevice

When you create a device object, these property values are automatically configured:

• Interface specifies the interface used to communicate with the instrument. For
device objects created using interface objects, it is that interface object. For
VXIplug&play and IVI-C, this is the session handle to the driver session. For
MATLAB instrument drivers, this is the handle to the driver's default COM interface.

• LogicalName is an IVI logical name. For non-IVI drivers, it is empty.
• Name is given by concatenating the instrument type with the name of the instrument

driver.
• RsrcName is the full VISA resource name for VXIplug&play and IVI drivers. For

MATLAB interface drivers, RsrcName is an empty character vector.

 icdevice

23-99

• Type is the instrument type, if known (for example, scope or multimeter).

To communicate with the instrument, the device object must be connected to the
instrument with the connect function. When the device object is constructed, the
object's Status property is closed. Once the device object is connected to the
instrument with the connect function, the Status property is configured to open.

Note ICDEVICE is unable to open MDDs with non-ascii characters either in their name
or path on Mac platforms.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
Status | connect | disconnect | instrhelp

Introduced before R2006a

23 Functions — Alphabetical List

23-100

inspect
Open Property Inspector

Syntax
inspect(obj)

Arguments
obj An instrument object or an array of instrument objects.

Description
inspect(obj) opens the Property Inspector and allows you to inspect and set properties
for instrument object obj.

Tips
You can also open the Property Inspector via the Workspace browser by right-clicking an
instrument object and selecting Call Property Inspector from the context menu, or by
double-clicking the object.

Below is a Property Inspector for a device object that communicates with a Tektronix
TDS 210 oscilloscope.

 inspect

23-101

Introduced before R2006a

23 Functions — Alphabetical List

23-102

instrcallback
Display event information when event occurs

Syntax
instrcallback(obj, event)

Arguments
obj An instrument object.
event The event that caused the callback to execute.

Description
instrcallback(obj, event) displays a message that contains the event type, the
time the event occurred, and the name of the instrument object that caused the event to
occur.

For error events, the error message is also displayed. For pin status events, the pin that
changed value and its value are also displayed. For trigger events, the trigger line is also
displayed. For datagram received events, the number of bytes received and the datagram
address and port are also displayed.

Note Using this callback for numbers greater than 127 with a terminator is not
supported.

Examples
The following example creates the serial port objects s on a Windows machine, and
configures s to execute instrcallback when an output-empty event occurs. The event
occurs after the *IDN? command is written to the instrument.

 instrcallback

23-103

s = serial('COM1');
set(s,'OutputEmptyFcn',@instrcallback)
fopen(s)
fprintf(s,'*IDN?','async')

The resulting display from instrcallback is shown below.
OutputEmpty event occurred at 08:37:49 for the object: Serial-COM1

Read the identification information from the input buffer and end the serial port session.

idn = fscanf(s);
fclose(s)
delete(s)
clear s

Tips
You should use instrcallback as a template from which you create callback functions
that suit your specific application needs.

Note Using this callback for numbers greater than 127 with a terminator is not
supported.

Introduced before R2006a

23 Functions — Alphabetical List

23-104

instrfind
Read instrument objects from memory to MATLAB workspace

Syntax
out = instrfind
out = instrfind('PropertyName',PropertyValue,...)
out = instrfind(S)
out = instrfind(obj,'PropertyName',PropertyValue,...)

Arguments
'PropertyName' A property name for obj.
PropertyValue A property value supported by PropertyName.
S A structure of property names and property values.
obj An instrument object, or an array of instrument objects.
out An array of instrument objects.

Description
out = instrfind returns all valid instrument objects as an array to out.

out = instrfind('PropertyName',PropertyValue,...) returns an array of
instrument objects whose property names and property values match those specified.

out = instrfind(S) returns an array of instrument objects whose property names
and property values match those defined in the structure S. The field names of S are the
property names, while the field values are the associated property values.

out = instrfind(obj,'PropertyName',PropertyValue,...) restricts the search
for matching property name/property value pairs to the instrument objects listed in obj.

 instrfind

23-105

Examples
Suppose you create the following two GPIB objects.

g1 = gpib('ni',0,1);
g2 = gpib('ni',0,2);
g2.EOSCharCode = 'CR';
fopen([g1 g2])

You can use instrfind to return instrument objects based on property values.

out1 = instrfind('Type','gpib');
out2 = instrfind({'Type','EOSCharCode'},{'gpib','CR'});

You can also use instrfind to return cleared instrument objects to the MATLAB
workspace.

clear g1 g2
newobjs = instrfind

Instrument Object Array
 Index: Type: Status: Name:
 1 gpib open GPIB0-1
 2 gpib open GPIB0-2

Assign the instrument objects their original names.

g1 = newobjs(1);
g2 = newobjs(2);

Close both g1 and g2.

fclose(newobjs)

Tips
instrfind will not return an instrument object if its ObjectVisibility property is
configured to off.

You must specify property values using the same format property requires. For example,
if the Name property value is specified as MyObject, instrfind will not find an object
with a Name property value of myobject. However, this is not the case for properties

23 Functions — Alphabetical List

23-106

that have a finite set of character vector values. For example, instrfind will find an
object with a Parity property value of Even or even. You can use the propinfo
function to determine if a property has a finite set of character vector values.

You can use property name/property value character vector pairs, structures, and cell
array pairs in the same call to instrfind.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
ObjectVisibility | clear | get | instrfindall | propinfo

Introduced before R2006a

 instrfind

23-107

instrfindall
Find visible and hidden instrument objects

Syntax
out = instrfindall
out = instrfindall('P1',V1,...)
out = instrfindall(s)
out = instrfindall(objs,'P1',V1,...)

Arguments
'P1' Name of an instrument object property or device group object property
V1 Value allowed for corresponding P1.
s A structure of property names and property values.
objs An array of instrument objects or device group objects.
out An array of returned instrument objects or device group objects.

Description
out = instrfindall finds all instrument objects and device group objects, regardless
of the value of the objects' ObjectVisibility property. The object or objects are
returned to out.

out = instrfindall('P1',V1,...) returns an array, out, of instrument objects and
device group objects whose property names and corresponding property values match
those specified as arguments.

out = instrfindall(s) returns an array, out, of instrument objects whose property
names and corresponding property values match those specified in the structure s, where
the field names correspond to property names and the field values correspond to the
current value of the respective property.

23 Functions — Alphabetical List

23-108

out = instrfindall(objs,'P1',V1,...) restricts the search for objects with
matching property name/value pairs to the instrument objects and device group objects
listed in objs.

Note that you can use character vector property name/property value pairs, structures,
and cell array property name/property value pairs in the same call to instrfindall.

Examples
Suppose you create the following instrument objects on a Windows machine.
s1 = serial('COM1');
s2 = serial('COM2');
g1 = gpib('mcc',0,2);
g1.ObjectVisibility = 'off'

Because object g1 has its ObjectVisibility set to off, it is not visible to commands
like instrfind:

instrfind

 Instrument Object Array
 Index: Type: Status: Name:
 1 serial closed Serial-COM1
 2 serial closed Serial-COM2

However, instrfindall finds all objects regardless of the value of
ObjectVisibility:
instrfindall

 Instrument Object Array
 Index: Type: Status: Name:
 1 serial closed Serial-COM1
 2 serial closed Serial-COM2
 3 gpib closed GPIB0-2

The following statements use instrfindall to return objects with specific property
settings, which are passed as cell arrays:
props = {'PrimaryAddress','SecondaryAddress};
vals = {2,0};
obj = instrfindall(props,vals);

 instrfindall

23-109

You can use instrfindall as an argument when you want to apply the command to all
objects, visible and invisible. For example, the following statement makes all objects
visible:

set(instrfindall,'ObjectVisibility','on')

Tips
instrfindall differs from instrfind in that it finds objects whose
ObjectVisibility property is set to off.

Property values are case sensitive. You must specify property values using the same
format as that the property requires. For example, if Name property value is specified as
MyObject, instrfindall will not find an object with a Name property value of
myobject. However, this is not the case for properties that have a finite set of character
vector values.

For example, instrfindall will find an object with a Parity property value of Even or
even. You can use the propinfo function to determine if a property has a finite set of
character vector values.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
ObjectVisibility | instrfind | propinfo

Introduced before R2006a

23 Functions — Alphabetical List

23-110

instrhelp
Help for instrument object type, function, or property

Syntax
instrhelp
instrhelp('name')
out = instrhelp('name')
instrhelp(obj)
instrhelp(obj,'name')
out = instrhelp(obj,'name')

Arguments
'name' A function name, property name, or instrument object type.
obj An instrument object.
out The help text.

Description
instrhelp returns a complete listing of toolbox functions, with a brief description of
each.

instrhelp('name') returns help for the function, property, or instrument object type
specified by name.

You can return specific instrument object information by specifying name in the form
object/function or object.property. For example, to return the help for a serial
port object's fprintf function, name would be serial/fprintf. To return the help for
a serial port object's Parity property, name would be serial.parity.

out = instrhelp('name') returns the help text to out.

 instrhelp

23-111

instrhelp(obj) returns a complete listing of functions and properties for obj, with a
brief description of each. Help for the constructor is also returned.

instrhelp(obj,'name') returns help for the function or property specified by name
associated with obj.

out = instrhelp(obj,'name') returns the help text to out.

Examples
The following commands illustrate some of the ways you can get function and property
help without creating an instrument object.

instrhelp gpib
out = instrhelp('gpib.m');
instrhelp set
instrhelp('gpib/set')
instrhelp EOSCharCode
instrhelp('gpib.eoscharcode')

The following commands illustrate some of the ways you can get function and property
help for an existing instrument object.

g = gpib('ni',0,1);
instrhelp(g)
instrhelp(g,'EOSMode');
out = instrhelp(g,'trigger');

Tips
When returning property help, the names in the See Also section that contain all
uppercase letters are function names. The names that contain a mixture of upper and
lowercase letters are property names. When returning function help, the See Also section
contains only function names.

You can also display help via the Workspace browser by right-clicking an instrument
object, and selecting Instrument Help from the context menu.

23 Functions — Alphabetical List

23-112

See Also
propinfo

Introduced before R2006a

 instrhelp

23-113

instrhwinfo
Information about available hardware

Syntax
out = instrhwinfo
out = instrhwinfo('interface')
out = instrhwinfo('drivertype')
out = instrhwinfo('interface','adaptor')
out = instrhwinfo('drivertype','drivername')
out = instrhwinfo('ivi','LogicalName')
out = instrhwinfo('interface','adaptor','type')
out = instrhwinfo(obj)
out = instrhwinfo(obj,'FieldName')

Arguments
'interface' A supported instrument interface.
'drivertype' Instrument driver type, may be matlab, ivi, or vxipnp.
'adaptor' A supported GPIB or VISA adaptor.
'drivername' Name of ivi, VXIplug&play, or MATLAB instrument driver.
'LogicalName' IVI logical name value.
'type' Type of VISA interface.
obj An instrument object or array of instrument objects.
'FieldName' A field name or cell array of field names associated with obj.
out A structure or array containing hardware information.

Description
out = instrhwinfo returns hardware information to the structure out. This
information includes the toolbox version, the MATLAB software version, and supported
interfaces.

23 Functions — Alphabetical List

23-114

out = instrhwinfo('interface') returns information related to the interface
specified by interface. interface can be serial, gpib, tcpip, udp, or visa. For the
GPIB and VISA interfaces, the information includes the installed adaptors. For the serial
port interface, the information includes the available ports and the object constructor
name. For the TCP/IP and UDP interfaces, the information includes the local host
address.

out = instrhwinfo('drivertype') returns a structure, out, which contains
information related to the specified driver type, drivertype. drivertype can be
matlab, vxipnp, or ivi. If drivertype is matlab, this information includes the
MATLAB instrument drivers found on the MATLAB software path. If drivertype is
vxipnp, this information includes the found VXIplug&play drivers. If drivertype is
ivi, this information includes the available logical names and information on the IVI
configuration store. You can use an IVI-C driver.

out = instrhwinfo('interface','adaptor') returns information related to the
adaptor specified by adaptor, and for the interface specified by interface. interface
can be gpib or visa. The returned information includes the adaptor version and
available hardware. The GPIB adaptors are agilent, ics, mcc, adlink, and ni. The
VISA adaptors are agilent, ni, and tek.

out = instrhwinfo('drivertype','drivername') returns a structure, out, which
contains information related to the specified driver, drivername, for the specified
drivertype. drivertype can be set to matlab, or vxipnp. The available drivername
values are returned by out = instrhwinfo('drivertype') .

out = instrhwinfo('ivi','LogicalName') returns a structure, out, which
contains information related to the specified logical name, LogicalName. The available
logical name values are returned by instrhwinfo('ivi').

out = instrhwinfo('interface','adaptor','type') returns a structure, out,
which contains information on the specified type, type. interface can only be visa.
adaptor can be agilent, ni, ics, keysight, mcc, adlink, or tek. type can be gpib,
vxi, gpib-vxi, serial, or rsib.

out = instrhwinfo(obj) returns information on the adaptor and vendor-supplied
DLL associated with the VISA or GPIB object obj. If obj is a serial port, TCPIP, or UDP
object, then JAR file information is returned. If obj is an array of instrument objects,
then out is a 1-by-n cell array of structures where n is the length of obj.

 instrhwinfo

23-115

out = instrhwinfo(obj,'FieldName') returns hardware information for the field
name specified by FieldName. FieldName can be a single character vector or a cell
array of character vectors. out is an m-by-n cell array where m is the length of obj and n
is the length of FieldName. You can return the supported values for FieldName using
the instrhwinfo(obj) syntax.

Examples
The following commands illustrate some of the ways you can get hardware-related
information without creating an instrument object.

out1 = instrhwinfo;
out2 = instrhwinfo('serial');
out3 = instrhwinfo('gpib','ni');
out4 = instrhwinfo('visa','agilent');

The following commands illustrate some of the ways you can get hardware-related
information for an existing instrument object.
vs = visa('agilent','ASRL1::INSTR');
out5 = instrhwinfo(vs)
out5 =
 AdaptorDllName: [1x67 char]
 AdaptorDllVersion: 'Version 1.2 (R13)'
 AdaptorName: 'AGILENT'
 VendorDriverDescription: 'Agilent Technologies VISA Driver'
 VendorDriverVersion: '1.1000'

vsdll = instrhwinfo(vs,'AdaptorDllName')
vsdll = D:\V6\toolbox\instrument\instrumentadaptors\win32\
mwagilentvisa.dll

Tips
You can also display hardware information via the Workspace browser by right-clicking
an instrument object, and selecting Display Hardware Info from the context menu.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

23 Functions — Alphabetical List

23-116

Introduced before R2006a

 instrhwinfo

23-117

instrid
Define and retrieve commands that identify instruments

Syntax
instrid
instrid('cmd')
out = instrid(...)

Arguments
cmd The instrument identification command.
out The list of commands used to locate and identify instruments.

Description
instrid returns the currently defined instrument identification commands.

instrid('cmd') defines the instruments identification commands to be the string cmd.
Note that you can also specify a cell array of commands.

out = instrid(...) returns the instrument identification commands to out.

Examples
Set the identification command to *ID?.

instrid('*ID?')

Specify three new identification commands using a cell array.

instrid({'*IDN?','*ID?','IDEN?'})

Assign a list of current identification commands to an output variable.

23 Functions — Alphabetical List

23-118

id_commands = instrid;

Tips
The Instrument Control Toolbox instrhwinfo and tmtool functions use the
instrument identification commands as defined by instrid when locating and
identifying instruments.

By default, Instrument Control Toolbox software uses the command *IDN?, which
identifies most instruments. However, some instruments respond to different
identification commands such as *ID? or *IDEN?.

If instrhwinfo or tmtool does not identify a known instrument, use instrid to
specify the identification commands the instrument will respond to. If instrid returns
no commands, an instrument cannot be found.

See Also
instrhwinfo | tmtool

Introduced before R2006a

 instrid

23-119

instrnotify
Define notification for instrument events

Syntax
instrnotify('Type', callback)
instrnotify({'P1', 'P2', ...}, 'Type', callback)
instrnotify(obj, 'Type', callback)
instrnotify(obj, {'P1', 'P2', ...}, 'Type', callback)
instrnotify('Type', callback, '-remove')
instrnotify(obj, 'Type', callback, '-remove')

Arguments
'Type' The type of event: ObjectCreated, ObjectDeleted, or

PropertyChangedPostSet
callback Function handle, character vector, or cell array to evaluate.
'P1', P2', ... Any number of object property names.
obj Instrument object or device group object.
'-remove' Argument to remove specified callback.

Description
instrnotify('Type', callback) evaluates the MATLAB expression, callback, in
the MATLAB workspace when an event of type Type is generated. Type can be
ObjectCreated, ObjectDeleted, or PropertyChangedPostSet.

If Type is ObjectCreated, callback is evaluated each time an instrument object or a
device group object is created. If Type is ObjectDeleted, callback is evaluated each
time an instrument object or a device group object is deleted. If Type is
PropertyChangedPostSet, callback is evaluated each time an instrument object or
device group object property is configured with set.

23 Functions — Alphabetical List

23-120

callback can be

• A function handle
• A character vector to be evaluated
• A cell array containing the function to evaluate in the first cell (function handle or

name of function) and extra arguments to pass to the function in subsequent cells

The callback function is invoked with

function(obj, event, [arg1, arg2,...])

where obj is the instrument object or device group object generating the event. event is
a structure containing information on the event generated. If Type is ObjectCreated or
ObjectDeleted, event contains the type of event. If Type is
PropertyChangedPostSet, event contains the type of event, the property being
configured, and the new property value.

instrnotify({'P1', 'P2', ...}, 'Type', callback) evaluates the MATLAB
expression, callback, in the MATLAB workspace when any of the specified properties,
P1, P2, ... are configured. Type can be only PropertyChangedPostSet.

instrnotify(obj, 'Type', callback) evaluates the MATLAB expression,
callback, in the MATLAB workspace when an event of type Type for object obj, is
generated. obj can be an array of instrument objects or device group objects.

instrnotify(obj, {'P1', 'P2', ...}, 'Type', callback) evaluates the
MATLAB expression, callback, in the MATLAB workspace when any of the specified
properties, P1, P2, are configured on object obj.

instrnotify('Type', callback, '-remove') removes the specified callback of
type Type.

instrnotify(obj, 'Type', callback, '-remove') removes the specified
callback of type Type for object obj.

Examples
instrnotify('PropertyChangedPostSet', @instrcallback);
g = gpib('mcc', 0, 5);
set(g, 'Name', 'mygpib');

 instrnotify

23-121

fopen(g);
fclose(g);
instrnotify('PropertyChangedPostSet',@instrcallback,'-remove');

Tips
PropertyChangedPostSet events are generated only when the property is configured
to a different value than what the property is currently configured to. For example, if a
GPIB object's Tag property is configured to 'myobject', a PropertyChangedPostSet
event will not be generated if the object's Tag property is currently set to 'myobject'. A
PropertyChangedPostSet event will be generated if the object's Tag property is set to
'myGPIBObject'.

If obj is specified and the callback Type is ObjectCreated, the callback will not be
generated because obj has already been created.

If Type is ObjectDeleted, the invalid object obj is not passed as the first input
argument to the callback function. Instead, an empty matrix is passed as the first
input argument.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Introduced before R2006a

23 Functions — Alphabetical List

23-122

instrreset
Disconnect and delete all instrument objects

Syntax
instrreset

Description
instrreset disconnects and deletes all instrument objects.

Tips
If data is being written or read asynchronously, the asynchronous operation is stopped.

instrreset is equivalent to issuing the stopasync (if needed), fclose, and delete
functions for all instrument objects.

When you delete an instrument object, it becomes invalid. Because you cannot connect
an invalid object to the instrument, you should remove it from the workspace with the
clear command.

See Also
clear | delete | fclose | isvalid | stopasync

Introduced before R2006a

 instrreset

23-123

invoke
Execute driver-specific function on device object

Syntax
out = invoke(obj,'name')
out = invoke(obj,'name',arg1,arg2,...)

Arguments
obj A device object.
name The function to execute.
arg1,arg2,... Arguments passed to name.
out The function output.

Description
out = invoke(obj,'name') executes the function specified by name on the device
object specified by obj. The function's output is returned to out.

out = invoke(obj,'name',arg1,arg2,...) passes the arguments arg1,arg2,...
to the function specified by name.

Examples
Create a device object for a Tektronix TDS 210 oscilloscope that is connected to a
National Instruments GPIB board.

g = gpib('ni',0,2);
d = icdevice('tektronix_tds210',g);

Perform a self-calibration for the oscilloscope by invoking the calibrate function.

23 Functions — Alphabetical List

23-124

out = invoke(d,'calibrate')
out =
 '0'

0 indicates that the self-calibration completed without any errors.

Tips
To list the driver-specific functions supported by obj, type

methods(obj)

To display help for a specific function, type

instrhelp(obj,'name')

See Also
Status | instrhelp | methods

Introduced before R2006a

 invoke

23-125

isvalid
Determine whether instrument objects are valid

Syntax
out = isvalid(obj)

Arguments
obj An instrument object or array of instrument objects.
out A logical array.

Description
out = isvalid(obj) returns the logical array out, which contains a 0 where the
elements of obj are invalid instrument objects and a 1 where the elements of obj are
valid instrument objects.

Examples
Suppose you create the following two GPIB objects:

g1 = gpib('ni',0,1);
g2 = gpib('ni',0,2);

g2 becomes invalid after it is deleted.

delete(g2)

isvalid verifies that g1 is valid and g2 is invalid.

garray = [g1 g2];
isvalid(garray)

23 Functions — Alphabetical List

23-126

ans =
 1 0

Tips
obj becomes invalid after it is removed from memory with the delete function. Because
you cannot connect an invalid object to the instrument, you should remove it from the
workspace with the clear command.

See Also
clear | delete

Introduced before R2006a

 isvalid

23-127

iviconfigurationstore
Create IVI configuration store object

Syntax
obj = iviconfigurationstore
obj = iviconfigurationstore('file')

Arguments
obj IVI configuration store object
'file' Configuration store data file

Description
obj = iviconfigurationstore creates an IVI configuration store object and
establishes a connection to the IVI Configuration Server. The data in the master
configuration store is used.

obj = iviconfigurationstore('file') creates an IVI configuration store object
and establishes a connection to the IVI Configuration Server. The data in the
configuration store, file, is used. If file cannot be found or is not a valid configuration
store, an error occurs.

See Also
add | commit | remove | update

Introduced before R2006a

23 Functions — Alphabetical List

23-128

length
Length of instrument object array

Syntax
length(obj)

Arguments
obj An instrument object or an array of instrument objects.

Description
length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

See Also
instrhelp | size

Introduced before R2006a

 length

23-129

load
Load instrument objects and variables into MATLAB workspace

Syntax
load filename
load filename obj1 obj2 ...
out = load('filename','obj1','obj2',...)

Arguments
filename The MAT-file name.
obj1 obj2 ... Instrument objects or arrays of instrument objects.
out A structure containing the specified instrument objects.

Description
load filename returns all variables from the MAT-file specified by filename into the
MATLAB workspace.

load filename obj1 obj2 ... returns the instrument objects specified by obj1
obj2... from the MAT-file filename into the MATLAB workspace.

out = load('filename','obj1','obj2',...) returns the specified instrument
objects from the MAT-file filename as a structure to out instead of directly loading
them into the workspace. The field names in out match the names of the loaded
instrument objects.

Examples
Suppose you create the GPIB objects g1 and g2, configure a few properties for g1, and
connect both objects to their associated instruments.

23 Functions — Alphabetical List

23-130

g1 = gpib('ni',0,1);
g2 = gpib('ni',0,2);
set(g1,'EOSMode','read','EOSCharCode','CR')
fopen([g1 g2])

The read-only Status property is automatically configured to open.

g1.Status
ans =
 open

g2.Status
ans =
 open

Save g1 and g2 to the file MyObject.mat, and then load the objects into the MATLAB
workspace.

save MyObject g1 g2
load MyObject g1 g2

Values for read-only properties are restored to their default values upon loading, while
all other property values are honored.

get([g1 g2],{'EOSMode','EOSCharCode','Status'})
ans =
 'read' 'CR' 'closed'
 'none' 'LF' 'closed'

Tips
Values for read-only properties are restored to their default values upon loading. For
example, the Status property is restored to closed. To determine if a property is read-
only, examine its reference pages or use the propinfo function.

See Also
instrhelp | propinfo | save

Introduced before R2006a

 load

23-131

makemid
Convert driver to MATLAB instrument driver format

Syntax
makemid('driver')
makemid('driver', 'filename')
makemid('driver', 'type')
makemid('driver', 'filename', 'type')

Arguments
'driver' Name of driver being converted.
'filename' Name of file that the converted driver is saved to. You may

specify a full pathname. If an extension is not specified,
the .mdd extension is used.

'type' The type of driver the function looks for. By default, the
function searches among all types.

Description
makemid('driver') searches through known driver types for driver and creates a
MATLAB instrument driver representation of the driver. Known driver types include
VXIplug&play and IVI-C. For driver you can use a Module (for IVI-C), a LogicalName
(for IVI-C), or the original VXIplug&play instrument driver name. The MATLAB
instrument driver will be saved in the current working directory as driver.mdd

The MATLAB instrument driver can then be modified using midedit to customize the
driver behavior, and may be used to instantiate a device object using icdevice.

makemid('driver', 'filename') creates and saves the MATLAB instrument driver
using the name and path specified by filename.

23 Functions — Alphabetical List

23-132

makemid('driver', 'type') and makemid('driver', 'filename', 'type')
override the default search order and look only for drivers whose type is type. Valid
types are vxiplug&play and ivi-c.

The function searches for the specified driver root interface. For example, if the driver
supports the IIviScope interface, an interface value of IIviScope results in a
device object that only contains the IVIScope class-compliant properties and methods.

Note MAKEMID is unable to open MDDs with non-ascii characters either in their name
or path on Mac platforms.

Examples
To convert the driver hp34401 into the MATLAB instrument driver hp34401.mdd in the
current working directory,

makemid('hp34401');

To convert the driver tktds5k into the MATLAB instrument driver with a specific name
and location,

makemid('tktds5k', 'C:\MyDrivers\tektronix_5k.mdd');

To convert the IVI-C driver tktds5k into the MATLAB instrument driver tktds5k.mdd
in the current working directory. This example causes the function to look for the driver
only among the IVI-C drivers.

makemid('tktds5k', 'ivi-c');

To create the MATLAB instrument driver MyIviLogicalName.mdd from the IVI logical
name MyIviLogicalName,

makemid('MyIviLogicalName');

See Also
icdevice | midedit

 makemid

23-133

Introduced before R2006a

23 Functions — Alphabetical List

23-134

maskWrite
Perform mask write operation on a holding register

Syntax
maskWrite(m,address,andMask,orMask)
maskWrite(m,address,andMask,orMask,serverId)

Description
maskWrite(m,address,andMask,orMask) writes data to MODBUS object m to a
holding register at address address, using the indicated mask values. The function can
set or clear individual bits in a specific holding register. It is a read/modify/write
operation, and uses a combination of an AND mask, an OR mask, and the current
contents of the register.

maskWrite(m,address,andMask,orMask,serverId) additionally specifies the
serverId as the address of the server to send the write command to.

Examples

Perform a Mask Read on a Holding Register

You can modify the contents of a holding register using the maskWrite function. The
function can set or clear individual bits in a specific holding register. It is a read/modify/
write operation, and uses a combination of an AND mask, an OR mask, and the current
contents of the register.

Create the AND and OR variables.

andMask = 6
orMask = 0

 maskWrite

23-135

Set bit 0 at address 20, and perform a mask write operation. Since the andMask is a 6,
that clears all bits except for bits 1 and 2. Bits 1 and 2 are preserved.

maskWrite(m,20,andMask,orMask)

Perform a Mask Read on a Holding Register, and Specify Server ID

Use the serverId argument to specify the address of the server to send the mask write
command to.

Set bit 0 at address 20 and perform a mask write operation at server ID 3.

maskWrite(m,20,6,0,3)

• “Create a MODBUS Connection” on page 11-4
• “Configure Properties for MODBUS Communication” on page 11-7
• “Modify the Contents of a Holding Register Using a Mask Write” on page 11-24

Input Arguments
address — Register address to perform mask write operation on
double

Register address to perform mask write operation on, specified as a double. Address must
be the first argument after the object name. This example sets bit 0 at address 20 and
performs a mask write operation.
Example: maskWrite(m,20,andMask,orMask)
Data Types: double

andMask — AND value to use in mask write operation
double

AND value to use in mask write operation, specified as a double. andMask must be the
second argument after the object name. The valid range is 0–65535.

This example sets bit 0 at address 20 and performs a mask write operation, using 6 as
the AND value.

23 Functions — Alphabetical List

23-136

Example: maskWrite(m,20,6,0)
Data Types: double

orMask — OR value to use in mask write operation
double

OR value to use in mask write operation, specified as a double. orMask must be the third
argument after the object name. The valid range is 0–65535.

This example sets bit 0 at address 20 and performs a mask write operation, using 0 as
the OR value.
Example: maskWrite(m,20,6,0)
Data Types: double

serverId — Address of the server to send the mask write command to
double

Address of the server to send the mask write command to, specified as a double. Server
ID must be specified after the object name, address, AND mask, and OR mask. If you do
not specify a serverId, the default of 1 is used. Valid values are 0–247, with 0 being the
broadcast address. This example sets bit 0 at address 20 and performs a mask write
operation at server ID 3.
Example: maskWrite(m,20,6,0,3)
Data Types: double

Tips
The function algorithm works as follows:

 Result = (register value AND andMask) OR (orMask AND (NOT andMask))

For example:

 Hex Binary
Current contents 12 0001 0010
And_Mask F2 1111 0010
Or_Mask 25 0010 0101
(NOT And_Mask) 0D 0000 1101

 maskWrite

23-137

Result 17 0001 0111

If the orMask value is 0, the result is simply the logical ANDing of the current contents
and the andMask. If the andMask value is 0, the result is equal to the orMask value.

See Also
modbus | read | write | writeRead

Topics
“Create a MODBUS Connection” on page 11-4
“Configure Properties for MODBUS Communication” on page 11-7
“Modify the Contents of a Holding Register Using a Mask Write” on page 11-24

Introduced in R2017a

23 Functions — Alphabetical List

23-138

memmap
Map memory for low-level memory read and write operations

Syntax
memmap(obj,'adrspace',offset,size)

Arguments
obj A VISA-VXI or VISA-GPIB-VXI object.
'adrspace' The memory address space.
offset Offset for the memory address space.
size Number of bytes to map.

Description
memmap(obj,'adrspace',offset,size) maps the amount of memory specified by
size in address space, adrspace with an offset, offset. You can configure adrspace
to A16 (A16 address space), A24 (A24 address space), or A32 (A32 address space).

Examples
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and an
Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Use memmap to map 16 bytes in the A16 address space.

memmap(vv,'A16',0,16)

Read the first and second instrument registers.

 memmap

23-139

reg1 = mempeek(vv,0,'uint16');
reg2 = mempeek(vv,2,'uint16');

Unmap the memory and disconnect vv from the instrument.

memunmap(vv)
fclose(vv)

Tips
Before you can map memory, obj must be connected to the instrument with the fopen
function. A connected interface object has a Status property value of open. An error is
returned if you attempt to map memory while obj is not connected to the instrument.

To unmap the memory, use the memunmap function. If memory is mapped and fclose is
called, the memory is unmapped before the object is disconnected from the instrument.

The MappedMemorySize property returns the size of the memory space mapped. You
must map the memory space before using the mempoke or mempeek function.

See Also
MappedMemorySize | Status | fclose | fopen | mempeek | mempoke | memunmap

Introduced before R2006a

23 Functions — Alphabetical List

23-140

mempeek
Low-level memory read from VXI register

Syntax
out = mempeek(obj,offset)
out = mempeek(obj,offset,'precision')

Arguments
obj A VISA-VXI or VISA-GPIB-VXI object.
offset The offset in the mapped memory space from which the data is

read.
'precision' The number of bits to read from the memory address.
out An array containing the returned value.

Description
out = mempeek(obj,offset) reads a uint8 value from the mapped memory space
specified by offset for the object obj. The value is returned to out.

out = mempeek(obj,offset,'precision') reads the number of bits specified by
precision, from the mapped memory space specified by offset. precision can be
uint8, uint16, or uint32, which instructs mempeek to read 8-, 16-, or 32-bit values,
respectively. precision can also be single, which instructs mempeek to read single
precision values.

Examples
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and an
Agilent E1432A digitizer with logical address 130.

 mempeek

23-141

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Use memmap to map 16 bytes in the A16 address space.

memmap(vv,'A16',0,16)

Perform a low-level read of the first and second instrument registers.

reg1 = mempeek(vv,0,'uint16')
reg1 =
 53247
reg2 = mempeek(vv,2,'uint16')
reg2 =
 20993

Unmap the memory and disconnect vv from the instrument.

memunmap(vv)
fclose(vv)

Refer to “Using High-Level Memory Functions” on page 5-17 for a description of the first
four registers of the E1432A digitizer.

Tips
Before you can read from the VXI register, obj must be connected to the instrument with
the fopen function. A connected interface object has a Status property value of open.
An error is returned if you attempt a read operation while obj is not connected to the
instrument.

You must map the memory space using the memmap function before using mempeek. The
MappedMemorySize property returns the size of the memory space mapped.

offset indicates the offset in the mapped memory space from which the data is read.
For example, if the mapped memory space begins at 200H, the offset is 2, and the
precision is uint8, then the data is read from memory location 202H. If the precision is
uint16, the data is read from 202H and 203H.

To increase speed, mempeek does not return error messages from the instrument.

23 Functions — Alphabetical List

23-142

See Also
MappedMemorySize | MemoryIncrement | Status | fopen | memmap | mempoke |
memunmap

Introduced before R2006a

 mempeek

23-143

mempoke
Low-level memory write to VXI register

Syntax
mempoke(obj,data,offset)
mempoke(obj,data,offset,'precision')

Arguments
obj A VISA-VXI or VISA-GPIB-VXI object.
data The data written to the memory address.
offset The offset in the mapped memory space to which the data is

written.
'precision' The number of bits to write to the memory address.

Description
mempoke(obj,data,offset) writes the uint8 value specified by data to the mapped
memory address specified by offset for the object obj.

mempoke(obj,data,offset,'precision') writes data using the number of bits
specified by precision. precision can be uint8, uint16, or uint32, which instructs
mempoke to write data as 8-, 16-, or 32-bit values, respectively. precision can also be
single, which instructs mempoke to write data as single-precision values.

Examples
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and an
Agilent E1432A digitizer with logical address 130.

23 Functions — Alphabetical List

23-144

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Use memmap to map 16 bytes in the A16 address space.

memmap(vv,'A16',0,16)

Perform a low-level write to the fourth instrument register, which has an offset of 6.

mempoke(vv,45056,6,'uint16')

Unmap the memory and disconnect vv from the instrument.

memunmap(vv)
fclose(vv)

Refer to “Using High-Level Memory Functions” on page 5-17 for a description of the first
four registers of the E1432A digitizer.

Tips
Before you can write to the VXI register, obj must be connected to the instrument with
the fopen function. A connected interface object has a Status property value of open.
An error is returned if you attempt a write operation while obj is not connected to the
instrument.

You must map the memory space using the memmap function before using mempoke. The
MappedMemorySize property returns the size of the memory space mapped.

offset indicates the offset in the mapped memory space to which the data is written.
For example, if the mapped memory space begins at 200H, the offset is 2, and the
precision is uint8, then the data is written to memory location 202H. If the precision is
uint16, the data is written to 202H and 203H.

To increase speed, mempoke does not return error messages from the instrument.

See Also
MappedMemorySize | MemoryIncrement | Status | fopen | memmap | mempeek

 mempoke

23-145

Introduced before R2006a

23 Functions — Alphabetical List

23-146

memread
High-level memory read from VXI register

Syntax
out = memread(obj)
out = memread(obj,offset)
out = memread(obj,offset,'precision')
out = memread(obj,offset,'precision','adrspace')
out = memread(obj,offset,'precision','adrspace',size)

Arguments
obj A VISA-VXI or VISA-GPIB-VXI object.
offset Offset for the memory address space.
'precision' The number of bits to read from the memory address.
'adrspace' The memory address space.
offset Offset for the memory address space.
size The size of the data block to read.
out An array containing the returned value.

Description
out = memread(obj) reads a uint8 value from the A16 address space with an offset of
0 for the object obj.

out = memread(obj,offset) reads a uint8 value from the A16 address space with
an offset specified by offset. You must specify offset as a decimal value.

out = memread(obj,offset,'precision') reads the number of bits specified by
precision from the A16 address space. precision can be uint8, uint16, or uint32,
which instructs memread to read 8-, 16-, or 32-bit values, respectively. precision can
also be single, which instructs memread to read single-precision values.

 memread

23-147

out = memread(obj,offset,'precision','adrspace') reads the specified
number of bits from the address space specified by adrspace. adrspace can be A16,
A24, or A32. The MemorySpace property indicates which VXI address spaces are used by
the instrument.

out = memread(obj,offset,'precision','adrspace',size) reads a block of
data with a size specified by size.

Examples
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and an
Agilent E1432A digitizer with logical address 130.
vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Perform a high-level read of the first instrument register.
reg1 = memread(vv,0,'uint16')
reg1 =
 53247

Perform a high-level read of the next three instrument registers.
reg24 = memread(vv,2,'uint16','A16',3)
reg24 =
 20993
 50012
 40960

Disconnect vv from the instrument.

fclose(vv)

Refer to “Using High-Level Memory Functions” on page 5-17 for a description of the first
four registers of the E1432A digitizer.

Tips
Before you can read data from the VXI register, obj must be connected to the instrument
with the fopen function. A connected interface object has a Status property value of

23 Functions — Alphabetical List

23-148

open. An error is returned if you attempt to read memory while obj is not connected to
the instrument.

See Also
MemoryIncrement | MemorySpace | Status | fopen | mempeek | memwrite

Introduced before R2006a

 memread

23-149

memunmap
Unmap memory for low-level memory read and write operations

Syntax
memunmap(obj)

Arguments
obj A VISA-VXI or VISA-GPIB-VXI object.

Description
memunmap(obj) unmaps memory space previously mapped by the memmap function.

Examples
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and an
Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Map 16 bytes in the A16 address space.

memmap(vv,'A16',0,16)

Read the first and second instrument registers.

reg1 = mempeek(vv,0,'uint16');
reg2 = mempeek(vv,2,'uint16');

Use memunmap to unmap the memory, and disconnect vv from the instrument.

23 Functions — Alphabetical List

23-150

memunmap(vv)
fclose(vv)

Tips
When the memory space is unmapped, the MappedMemorySize property is set to 0 and
the MappedMemoryBase property is set to 0H.

See Also
MappedMemoryBase | MappedMemorySize | memmap | mempeek | mempoke

Introduced before R2006a

 memunmap

23-151

memwrite
High-level memory write to VXI register

Syntax
memwrite(obj,data)
memwrite(obj,data,offset)
memwrite(obj,data,offset,'precision')
memwrite(obj,data,offset,'precision','adrspace')

Arguments
obj A VISA-VXI or VISA-GPIB-VXI object.
data The data written to the memory address.
offset Offset for the memory address space.
'precision' The number of bits to write to the memory address.
'adrspace' The memory address space.

Description
memwrite(obj,data) writes the uint8 value specified by data to the A16 address
space with an offset of 0 for the object obj. data can be an array of uint8 values.

memwrite(obj,data,offset) writes data to the A16 address space with an offset
specified by offset. offset is specified as a decimal value.

memwrite(obj,data,offset,'precision') writes data with precision specified by
precision. precision can be uint8, uint16, or uint32, which instructs memwrite to
write data as 8-, 16-, or 32-bit values, respectively. precision can also be single,
which instructs memwrite to write data as single-precision values.

23 Functions — Alphabetical List

23-152

memwrite(obj,data,offset,'precision','adrspace') writes data to the
address space specified by adrspace. adrspace can be A16, A24, or A32. The
MemorySpace property indicates which VXI address spaces are used by the instrument.

Examples
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and an
Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Perform a high-level write to the fourth instrument register, which has an offset of 6.

memwrite(vv,45056,6,'uint16','A16')

Disconnect vv from the instrument.

fclose(vv)

Refer to “Using High-Level Memory Functions” on page 5-17 for a description of the first
four registers of the E1432A digitizer.

Tips
Before you can write to the VXI register, obj must be connected to the instrument with
the fopen function. A connected interface object has a Status property value of open.
An error is returned if you attempt a write operation while obj is not connected to the
instrument.

See Also
MemoryIncrement | MemorySpace | Status | fopen | mempoke | memread

Introduced before R2006a

 memwrite

23-153

methods
Class method names and descriptions

Syntax
m = methods('classname')
m = methods(object)
m = methods(...,'-full')

Arguments
m Cell array of character vectors
'classname' Class whose methods are returned
object An instrument object or device group object
'-full' Request to return full descriptions of methods

Description
m = methods('classname') returns, in a cell array of character vectors, the names of
all methods for the class with the name classname.

m = methods(object) returns the names of all methods for the class of which object
is an instance.

m = methods(...,'-full') returns full descriptions of the methods in the class,
including inheritance information and, for Java® methods, also attributes and
signatures. Duplicate method names with different signatures are not removed. If
classname represents a MATLAB class, then inheritance information is returned only if
that class has been instantiated.

23 Functions — Alphabetical List

23-154

Tips
methods differs from what in that the methods from all method directories are reported
together, and methods removes all duplicate method names from the result list.
methods will also return the methods for a Java class.

See Also
help | methodsview | what | which

Introduced before R2006a

 methods

23-155

midedit
Open graphical tool for creating and editing MATLAB instrument driver

Syntax
midedit
midedit('driver')

Arguments
'driver' The name of a MATLAB instrument driver.

Description
midedit opens the MATLAB Instrument Driver Editor, which is a graphical tool for
creating and editing instrument drivers.

midedit('driver') opens the MATLAB Instrument Driver Editor for the specified
instrument driver. The default extension for driver is .mdd. Note that driver can include
a relative partial pathname.

The editor consists of two main parts: the navigation pane and the detail pane. The
navigation pane lists the driver-specific properties and functions in a tree view, while the
detail pane allows you to configure and document the properties and functions.

midedit may also be used to import VXIplug&play or IVI drivers. With midedit open,
select Import from the File menu. The import process creates a new MATLAB
Instrument Driver based on the VXIplug&play or IVI driver. This allows you to
customize the behavior of device objects that use the VXIplug&play or IVI driver.

For details and examples on the MATLAB Instrument Driver Editor, see “MATLAB
Instrument Driver Editor Overview” on page 19-2.

23 Functions — Alphabetical List

23-156

Note MIDEDIT is unable to open MDDs with non-ascii characters either in their name
or path on Mac platforms.

See Also
icdevice | makemid | midtest | tmtool

Introduced before R2006a

 midedit

23-157

midtest
Open graphical tool for testing MATLAB instrument driver

Syntax
midtest
midtest('file')

Arguments
'file' File containing the test to be used by the MATLAB Instrument Driver

Testing Tool

Description
midtest opens the MATLAB Instrument Driver Testing Tool. The MATLAB Instrument
Driver Testing Tool provides a graphical environment for creating a test to verify the
functionality of a MATLAB instrument driver.

The MATLAB Instrument Driver Testing Tool provides a way to

• Verify property behavior
• Verify function behavior
• Save the test as MATLAB code
• Export the test results to MATLAB workspace, figure window, MAT-file, or the

MATLAB Variables editor
• Save test results as an HTML page

midtest('file') opens the MATLAB Instrument Driver Testing Tool with the test
loaded from file.

For a full description of the tool with examples, see “Instrument Driver Testing Tool
Overview” on page 20-2.

23 Functions — Alphabetical List

23-158

Examples
midtest('test.xml')

opens the MATLAB Instrument Driver Testing Tool with the test test.xml loaded.

See Also
icdevice | makemid | midedit | tmtool

Introduced before R2006a

 midtest

23-159

modbus
Create MODBUS object

Syntax
m = modbus(Transport,DeviceAddress)
m = modbus(Transport,DeviceAddress,Port)
m = modbus(Transport,DeviceAddress,Name,Value)
m = modbus(Transport,'Port')
m = modbus(Transport,'Port',Name,Value)

Description
m = modbus(Transport,DeviceAddress) constructs a MODBUS object, m, over the
transport type Transport using the specified 'DeviceAddress'. When the transport is
'tcpip', DeviceAddress must be specified as the second argument. DeviceAddress
is the IP address or host name of the MODBUS server.

m = modbus(Transport,DeviceAddress,Port) additionally specifies Port. When
the transport is 'tcpip', DeviceAddress must be specified. Port is the remote port
used by the MODBUS server. Port is optional, and it defaults to 502, which is the
reserved port for MODBUS.

m = modbus(Transport,DeviceAddress,Name,Value) specifies additional options
with one or more name-value pair arguments using any of the previous syntaxes. For
example, you can specify a timeout value. The Timeout property specifies the waiting
time to complete read and write operations in seconds, and the default is 10.

m = modbus(Transport,'Port') constructs a MODBUS object m over the transport
type Transport using the specified 'Port'. When the transport is 'serialrtu',
'Port' must be specified. This argument is the serial port the MODBUS server is
connected to, such as 'COM3'.

m = modbus(Transport,'Port',Name,Value) specifies additional options with one
or more name-value pair arguments using any of the previous syntaxes. For example,

23 Functions — Alphabetical List

23-160

you can specify NumRetries, the number of retries to perform if there is no reply from
the server after a timeout.

Examples

Create Object Using TCP/IP Transport

When the transport is TCP/IP, you must specify the IP address or host name of the
MODBUS server. You can optionally specify the remote port used by the MODBUS
server. Port defaults to 502, which is the reserved port for MODBUS.

Create the MODBUS object m using the host address shown and port of 308.

m = modbus('tcpip', '192.168.2.1', 308)

m =

 Modbus TCPIP with properties:

 DeviceAddress: '192.168.2.1'
 Port: 308
 Status: 'open'
 NumRetries: 1
 Timeout: 10 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

The object output shows both the arguments you set and the defaults.

Create Object Using Serial RTU Transport

When the transport is 'serialrtu', you must specify 'Port'. This is the serial port
the MODBUS server is connected to.

Create the MODBUS object m using the Port of 'COM3'.

m = modbus('serialrtu','COM3')

m =

 modbus

23-161

Modbus Serial RTU with properties:

 Port: 'COM3'
 BaudRate: 9600
 DataBits: 8
 Parity: 'none'
 StopBits: 1
 Status: 'open'
 NumRetries: 1
 Timeout: 10 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

The object output shows arguments you set and defaults that are used automatically.

Create Object and Set a Property

You can create the object using a name-value pair to set the properties such as Timeout.
The Timeout property specifies the maximum time in seconds to wait for a response
from the MODBUS server, and the default is 10. You can change the value either during
object creation or after you create the object.

For the list and description of properties you can set for both transport types, see
"Configure Properties for MODBUS Communication."

Create a MODBUS object using Serial RTU, but increase the Timeout to 20 seconds.

m = modbus('serialrtu','COM3','Timeout',20)

m =

Modbus Serial RTU with properties:

 Port: 'COM3'
 BaudRate: 9600
 DataBits: 8
 Parity: 'none'
 StopBits: 1
 Status: 'open'

23 Functions — Alphabetical List

23-162

 NumRetries: 1
 Timeout: 20 (seconds)
 ByteOrder: 'big-endian'
 WordOrder: 'big-endian'

The object output reflects the Timeout property change.

• “Create a MODBUS Connection” on page 11-4
• “Configure Properties for MODBUS Communication” on page 11-7

Input Arguments
Transport — Physical transport layer for device communication
character vector | string

Physical transport layer for device communication, specified as a character vector or
string. Specify transport type as the first argument when you create the modbus object.
You must set the transport type as either 'tcpip' or 'serialrtu' to designate the
protocol you want to use.
Example: m = modbus('tcpip', '192.168.2.1')
Data Types: char

DeviceAddress — IP address or host name of MODBUS server
character vector | string

IP address or host name of MODBUS server, specified as a character vector or string. If
transport is TCP/IP, it is required as the second argument during object creation.
Example: m = modbus('tcpip', '192.168.2.1')
Data Types: char

Port — Remote port used by MODBUS server
502 (default) | double

Remote port used by MODBUS server, specified as a double. Optional as a third
argument during object creation if transport is TCP/IP. The default of 502 is used if none
is specified.

 modbus

23-163

Example: m = modbus('tcpip','192.168.2.1',308)
Data Types: double

'Port' — Serial port MODBUS server is connected to
character vector | string

Serial port MODBUS server is connected to, e.g. 'COM1', specified as a character vector
or string. If transport is Serial RTU, it is required as the second argument during object
creation.
Example: m = modbus('serialrtu','COM3')
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

There are a number of name-value pairs that can be used when you create the modbus
object, including the two shown here. Some can only be used with either TCP/IP or Serial
RTU, and some can be used with both transport types. For a list of all the properties and
how to set them both during and after object creation, see “Configure Properties for
MODBUS Communication” on page 11-7.
Example: m = modbus('serialrtu','COM3','Timeout',20)

Timeout — Maximum time in seconds to wait for a response from the MODBUS server
10 (default) | double

Maximum time in seconds to wait for a response from the MODBUS server, specified as
the comma-separated pair consisting of 'Timeout' and a positive value of type double.
The default is 10. You can change the value either during object creation or after you
create the object.
Example: m = modbus('serialrtu','COM3','Timeout',20)
Data Types: double

23 Functions — Alphabetical List

23-164

NumRetries — Number of retries to perform if there is no reply from the server after a
timeout
double

Number of retries to perform if there is no reply from the server after a timeout, specified
as the comma-separated pair consisting of 'NumRetries' and a positive value of type
double. If using the Serial RTU transport, the message is resent. If using the TCP/IP
transport, the connection is closed and reopened. You can change the value either during
object creation, or after you create the object.
Example: m = modbus('serialrtu','COM3','NumRetries',5)
Data Types: double

See Also
maskWrite | read | write | writeRead

Topics
“Create a MODBUS Connection” on page 11-4
“Configure Properties for MODBUS Communication” on page 11-7

Introduced in R2017a

 modbus

23-165

obj2mfile
Convert instrument object to MATLAB code

Syntax
obj2mfile(obj,'filename')
obj2mfile(obj,'filename','syntax')
obj2mfile(obj,'filename','mode')
obj2mfile(obj,'filename','syntax','mode')
obj2mfile(obj,'filename','reuse')
obj2mfile(obj,'filename','syntax','mode','reuse')

Arguments
obj An instrument object or an array of instrument objects.
'filename' The name of the file that the MATLAB code is written to. You can

specify the full pathname. If an extension is not specified, the .m
extension is used.

'syntax' Syntax of the converted MATLAB code. By default, the set syntax
is used. If dot is specified, then the dot notation is used.

'mode' Specifies whether all properties are converted to code, or only
modified properties are converted to code.

'reuse' Specifies whether existing object is reused or new object is created.

Description
obj2mfile(obj,'filename') converts obj to the equivalent MATLAB code using the
set syntax and saves the code to filename. Only those properties not set to their
default value are saved.

obj2mfile(obj,'filename','syntax') converts obj to the equivalent MATLAB
code using the syntax specified by syntax. You can specify syntax to be set or dot. set
uses the set syntax, while dot uses the dot notation.

23 Functions — Alphabetical List

23-166

obj2mfile(obj,'filename','mode') converts the properties specified by mode. You
can specify mode to be all or modified. If mode is all, then all properties are converted
to code. If mode is modified, then only those properties not set to their default value are
converted to code.

obj2mfile(obj,'filename','syntax','mode') converts the specified properties to
code using the specified syntax.

obj2mfile(obj,'filename','reuse') check for an existing instrument object, obj,
before creating obj. If reuse is reuse, the object is used if it exists, otherwise the object
is created. If reuse is create, the object is always created. By default, reuse is reuse.

An object will be reused if the existing object has the same constructor arguments as the
object about to be created, and if their Type and Tag property values are the same.

obj2mfile(obj,'filename','syntax','mode','reuse') check for an existing
instrument object, obj, before creating obj. If reuse is reuse, the object is used if it
exists, otherwise the object is created. If reuse is create, the object is always created.
By default, reuse is reuse.

An object will be reused if the existing object has the same constructor arguments as the
object about to be created, and if their Type and Tag property values are the same.

Examples
Suppose you create the GPIB object g, and configure several property values.
g = gpib('ni',0,1);
set(g,'Tag','MyGPIB object','EOSMode','read','EOSCharCode','CR')
set(g,'UserData',{'test',2,magic(10)})

The following command writes MATLAB code to the files MyGPIB.m and MyGPIB.mat.

obj2mfile(g,'MyGPIB.m','dot')

MyGPIB.m contains code that recreates the commands shown above using the dot
notation for all properties that have their default values changed. Because UserData is
set to a cell array of values, this property appears in MyGPIB.m as

obj1.UserData = userdata1;

It is saved in MyGPIB.mat as

 obj2mfile

23-167

userdata = {'test', 2, magic(10)};

To recreate g in the MATLAB workspace using a new variable, gnew,

gnew = MyGPIB;

The associated MAT-file, MyGPIB.mat, is automatically run and UserData is assigned
the appropriate values.

gnew.UserData
ans =
 'test' [2] [10x10 double]

Tips
You can recreate a saved instrument object by typing the name of the file at the
MATLAB Command Window.

If the UserData property is not empty or if any of the callback properties are set to a cell
array of values or a function handle, then the data stored in those properties is written to
a MAT-file when the instrument object is converted and saved. The MAT-file has the
same name as the file containing the instrument object code (see the example below).

Read-only properties are restored with their default values. For example, suppose an
instrument object is saved with a Status property value of open. When the object is
recreated, Status is set to its default value of closed.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
propinfo

Introduced before R2006a

23 Functions — Alphabetical List

23-168

oscilloscope
Create Quick-Control Oscilloscope object

Syntax
myScope = oscilloscope()
connect(myScope);
set(myScope, 'P1',V1,'P2',V2,...)
waveformArray = readWaveform(myScope);

Description
The Quick-Control Oscilloscope can be used for any oscilloscope that uses VISA and an
underlying IVI-C driver. However, you do not have to directly deal with the underlying
driver. You can also use it for Tektronix oscilloscopes. This is an easy to use oscilloscope
object.

myScope = oscilloscope() creates an instance of the scope named myScope.

connect(myScope); connects to the scope.

set(myScope, 'P1',V1,'P2',V2,...) assigns the specified property values.

waveformArray = readWaveform(myScope); acquires a waveform from the scope.

For information on the prerequisites for using oscilloscope, see “Quick-Control
Oscilloscope Requirements” on page 14-26.

The Quick-Control Oscilloscope oscilloscope function can use the following special
functions, in addition to standard functions such as connect and disconnect.
Function Description
autoSetup Automatically configures the instrument based on the

input signal.

autoSetup(myScope);

 oscilloscope

23-169

Function Description
disableChannel Disables oscilloscope's channel(s).

 disableChannel('Channel1');
 disableChannel({'Channel1', 'Channel2'});

enableChannel Enables oscilloscope's channel(s) from which waveform(s)
will be retrieved.
 enableChannel('Channel1');
 enableChannel({'Channel1', 'Channel2'});

drivers Retrieves a list of available oscilloscope instrument
drivers. Returns a list of available drivers with their
supported instrument models.

driverlist = drivers(myScope);
resources Retrieves a list of available resources of instruments. It

returns a list of available VISA resource strings when
using an IVI-C scope. It returns the interface resource
information when using a Tektronix scope.

res = resources(myScope);
getVerticalCoupling Returns the value of how the oscilloscope couples the

input signal for the selected channel name as a MATLAB
character vector. Possible values returned are 'AC', 'DC',
and 'GND'.
 VC = getVerticalCoupling(myScope, 'Channel1');

getVerticalOffset Returns location of the center of the range for the selected
channel name as a MATLAB character vector. The units
are volts.
 VO = getVerticalOffset(myScope, 'Channel1');

getVerticalRange Returns absolute value of the input range the oscilloscope
can acquire for selected channel name as a MATLAB
character vector. The units are volts.
 VR = getVerticalRange(myScope, 'Channel1');

readWaveform Returns the waveform(s) displayed on the scope screen.
Retrieves the waveform(s) from enabled channel(s).

w = readWaveform(myScope);

23 Functions — Alphabetical List

23-170

Function Description
setVerticalCoupling Specifies how the oscilloscope couples the input signal for

the selected channel name as a MATLAB character
vector. Valid values are 'AC', 'DC', and 'GND'.
 setVerticalCoupling(myScope, 'Channel1', 'AC');

setVerticalOffset Specifies location of the center of the range for the
selected channel name as a MATLAB character vector.
For example, to acquire a sine wave that spans between
0.0 and 10.0 volts, set this attribute to 5.0 volts.
 setVerticalOffset(myScope, 'Channel1', 5);

setVerticalRange Specifies the absolute value of the input range the
oscilloscope can acquire for the selected channel name as
a MATLAB character vector. The units are volts.
 setVerticalRange(myScope, 'Channel1', 10);

Arguments
The Quick-Control Oscilloscope oscilloscope function can use the following properties.
Property Description
ChannelNames Read-only property that provides available channel

names in a cell array.
ChannelsEnabled Read-only property that provides currently enabled

channel names in a cell array.
Status Read-only property that indicates the communication

status.

Valid values are open or closed.
Timeout Use to get or set a timeout value.

Value cannot be negative number. Default is 10 seconds.
AcquisitionTime Use to get or set acquisition time value. Used to control

the time in seconds that corresponds to the record length.

Value must be a positive, finite number.

 oscilloscope

23-171

Property Description
AcquisitionStartDelay Use to set or get the length of time in seconds from the

trigger event to first point in waveform record.

If positive, the first point in the waveform occurs after the
trigger. If negative, the first point in the waveform occurs
before the trigger.

TriggerMode Use to set the triggering behavior. Values are:

'normal' – the oscilloscope waits until the trigger the
user specifies occurs.

'auto' – the oscilloscope automatically triggers if the
configured trigger does not occur within the oscilloscope’s
timeout period.

TriggerSlope Use to set or get trigger slope value.

Valid values are falling or rising.
TriggerLevel Specifies the voltage threshold in volts for the trigger

control.
TriggerSource Specifies the source the oscilloscope monitors for a

trigger. It can be channel name or other values.
Resource Set up before connecting to instrument. Set with value of

your instrument’s resource string, for example:
set(myScope, 'Resource',
 'TCPIP0::a-m6104a-004598::inst0::INSTR');

DriverDetectionMode Optionally used to set up criteria for connection.

Valid values are auto or manual. Default is auto.
auto means you do not have to set a driver name before
connecting to an instrument.

If set to manual, a driver name must be provided before
connecting.

Driver Use only if set DriverDetectionMode to manual. Then
use to give driver name. Only use if driver name cannot
be figured out programmatically.

23 Functions — Alphabetical List

23-172

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Examples
Create an instance of the scope called myScope.

myScope = oscilloscope()

Discover available resources. A resource string is an identifier to the instrument. You
need to set it before connecting to the instrument.

availableResources = resources(myScope)

If multiple resources are available, use your VISA utility to verify the correct resource
and set it.

set(myScope, 'Resource', 'TCPIP0::a-m6104a-004598::inst0::INSTR');

Connect to the scope.

connect(myScope);

Automatically configure the scope based on the input signal.

autoSetup(myScope);

Configure the oscilloscope.

% Set the acquisition time to 0.01 second.
set(myScope, 'AcquisitionTime', 0.01);

% Set the acquisition to collect 2000 data points.
set(myScope, 'WaveformLength', 2000);

% Set the trigger mode to normal.
set(myScope, 'TriggerMode', 'normal');

% Set the trigger level to 0.1 volt.
set(myScope, 'TriggerLevel', 0.1);

 oscilloscope

23-173

% Enable channel 1.
enableChannel(myScope, 'Channel1');

% Set the vertical coupling to AC.
setVerticalCoupling (myScope, 'Channel1', 'AC');

% Set the vertical range to 5.0.
setVerticalRange (myScope, 'Channel1', 5.0);

Communicate with the instrument. For example, read a waveform.

% Acquire the waveform.
waveformArray = readWaveform(myScope);

% Plot the waveform and assign labels for the plot.
plot(waveformArray);
xlabel('Samples');
ylabel('Voltage');

See Also

Topics
“The Quick-Control Interfaces” on page 14-25

Introduced in R2011b

23 Functions — Alphabetical List

23-174

propinfo
Instrument object property information

Syntax
out = propinfo(obj)
out = propinfo(obj,'PropertyName')

Arguments
obj An instrument object.
'PropertyName' A property name or cell array of property names.
out A structure containing property information.

Description
out = propinfo(obj) returns the structure out with field names given by the
property names for obj. Each property name in out contains the fields shown below.
Field Name Description
Type The property data type. Possible values are any, ASCII

value, callback, instrument range value, double,
character vector, and struct.

Constraint The type of constraint on the property value. Possible values
are ASCII value, bounded, callback, instrument range
value, enum, and none.

ConstraintValue Property value constraint. The constraint can be a range of
valid values or a list of valid character vector values.

DefaultValue The property default value.

 propinfo

23-175

Field Name Description
ReadOnly The condition under which a property is read-only. Possible

values are always, never, whileOpen, and
whileRecording.

Interface Specific If the property is interface-specific, a 1 is returned. If a 0 is
returned, the property is supported for all interfaces.

out = propinfo(obj,'PropertyName') returns the structure out for the property
specified by PropertyName. The field names of out are given in the table shown above.
If PropertyName is a cell array of property names, a cell array of structures is returned
for each property.

Examples
To return all property information for the GPIB object g,

g = gpib('ni',0,1);
out = propinfo(g);

To display all the property information for the InputBufferSize property,

out.InputBufferSize
ans =
 Type: 'double'
 Constraint: 'none'
 ConstraintValue: ''
 DefaultValue: 512
 ReadOnly: 'whileOpen'
 InterfaceSpecific: 0

To display the default value for the EOSMode property,

out.EOSMode.DefaultValue
ans =
none

Tips
You can get help for instrument object properties with the instrhelp function.

23 Functions — Alphabetical List

23-176

You can display all instrument object property names and their current values using the
get function. You can display all configurable properties and their possible values using
the set function.

When specifying property names, you can do so without regard to case, and you can make
use of property name completion. For example, if g is a GPIB object, then the following
commands are all valid.

out = propinfo(g,'EOSMode');
out = propinfo(g,'eosmode');
out = propinfo(g,'EOSM');

See Also
get | instrhelp | set

Introduced before R2006a

 propinfo

23-177

query
Write text to instrument, and read data from instrument

Syntax
out = query(obj,'cmd')
out = query(obj,'cmd','wformat')
out = query(obj,'cmd','wformat','rformat')
[out,count] = query(...)
[out,count,msg] = query(...)
[out,count,msg,datagramaddress,datagramport] = query(...)

Arguments
obj An interface object.
'cmd' String that is written to the instrument.
'wformat' Format for written data.
'rformat' Format for read data.
out Contains data read from the instrument.
count The number of values read.
msg A message indicating if the read operation was unsuccessful.
datagramaddress The datagram address.
datagramport The datagram port.

Description
out = query(obj,'cmd') writes the string cmd to the instrument connected to obj.
The data read from the instrument is returned to out. By default, the %s\n format is
used for cmd, and the %c format is used for the returned data.

out = query(obj,'cmd','wformat') writes the string cmd using the format
specified by wformat.

23 Functions — Alphabetical List

23-178

wformat is a C language conversion specification. Conversion specifications involve the %
character and the conversion characters d, i, o, u, x, X, f, e, E, g, G, c, and s. Refer to the
sprintf file I/O format specifications or a C manual for more information.

out = query(obj,'cmd','wformat','rformat') writes the string cmd using the
format specified by wformat. The data read from the instrument is returned to out
using the format specified by rformat.

rformat is a C language conversion specification. The supported conversion
specifications are identical to those supported by wformat.

[out,count] = query(...) returns the number of values read to count.

[out,count,msg] = query(...) returns a warning message to msg if the read
operation did not complete successfully.

[out,count,msg,datagramaddress,datagramport] = query(...) returns the
remote address and port from which the datagram originated. These values are returned
only when using a UDP object.

Examples
This example creates the GPIB object g, connects g to a Tektronix TDS 210 oscilloscope,
writes and reads text data using query, and then disconnects g from the instrument.

g = gpib('ni',0,1);
fopen(g)
idn = query(g,'*IDN?')
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04
fclose(g)

Tips
Before you can write or read data, obj must be connected to the instrument with the
fopen function. A connected interface object has a Status property value of open. An
error is returned if you attempt to perform a query operation while obj is not connected
to the instrument.

 query

23-179

query operates only in synchronous mode, and blocks the command line until the write
and read operations complete execution.

Using query is equivalent to using the fprintf and fgets functions. The rules for
completing a write operation are described in the fprintf reference pages. The rules for
completing a read operation are described in the fgets reference pages.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
fgets | fopen | fprintf | sprintf

Introduced before R2006a

23 Functions — Alphabetical List

23-180

read
Read binary data from SPI instrument

Syntax
A = read(OBJ, SIZE)

Description
A = read(OBJ, SIZE) reads the specified number of values, SIZE, from the SPI device
connected to interface object, OBJ, and returns to A. OBJ must be a 1-by-1 SPI interface
object. By default the 'uint8' precision is used.

The interface object must be connected to the device with the connect function before
any data can be read from the device, otherwise an error is returned. A connected
interface object has a ConnectionStatus property value of connected.

Available options for SIZE include: N – read at most N values into a column vector. SIZE
cannot be set to INF.

The SPI protocol operates in full duplex mode, input and output data transfers happen
simultaneously. SPI communication requires N bytes of dummy data to be written into
the device for reading N bytes of data from the device. The dummy data written is zeros.

For more information on using the SPI interface and this function, see “Configuring SPI
Communication” on page 10-4 and “Transmitting Data Over the SPI Interface” on page
10-9.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

 read

23-181

Examples
This example shows how to create a SPI object s, and read data.

Construct a spi object called s using Vendor 'aardvark', with BoardIndex of 0, and
Port of 0.

s = spi('aardvark', 0, 0);

Connect to the chip.

connect(s);

Read data from the chip.

data = read(s, 2);

Disconnect the SPI device and clean up by clearing the object.

disconnect(s);
clear('s');

Introduced in R2013b

23 Functions — Alphabetical List

23-182

read
Read data from a MODBUS server

Syntax
read(m,target,address)
read(m,target,address,count)
read(m,target,address,count,serverId,precision)

Description
read(m,target,address) reads one data value to MODBUS object m from target type
target at the starting address address. The function reads one value by default. If you
want to read more than one value, add the count argument.

read(m,target,address,count) reads data to MODBUS object m from target type
targetat the starting address address using the number of values to read count.

read(m,target,address,count,serverId,precision) additionally specifies
serverId, which is the address of the server to send the read command to, and the
precision, which is the data format of the register being read.

Examples

Read Coils Over MODBUS

If the read target is coils, the function reads the values from 1–2000 contiguous coils in
the remote server, starting at the specified address. A coil is a single output bit. A value
of 1 indicates the coil is on and a value of 0 means it is off.

Read 8 coils, starting at address 1. The address parameter is the starting address of the
coils to read, and the count parameter is the number of coils to read.

 read

23-183

read(m,'coils',1,8)

ans =

 1 1 0 1 1 0 1 0

Read Inputs Over MODBUS

If the read target is inputs, the function reads the values from 1–2000 contiguous
discrete inputs in the remote server, starting at the specified address. A discrete input is
a single input bit. A value of 1 indicates the input is on and a value of 0 means it is off.

Read 10 discrete inputs, starting at address 2. The address parameter is the starting
address of the inputs to read, and the count parameter is the number of inputs to read.

read(m,'inputs',2,10)

ans =

 1 1 0 1 1 0 1 0 0 1

Read Input Registers Over MODBUS

If the read target is input registers, the function reads the values from 1–125 contiguous
input registers in the remote server, starting at the specified address. An input register
is a 16-bit read-only register.

Read 4 input registers, starting at address 20. The address parameter is the starting
address of the input registers to read, and the count parameter is the number of input
registers to read.

read(m,'inputregs',20,4)

ans =

 27640 60013 51918 62881

23 Functions — Alphabetical List

23-184

Read Holding Registers Over MODBUS

If the read target is holding registers, the function reads the values from 1–125
contiguous holding registers in the remote server, starting at the specified address. A
holding register is a 16-bit read/write register.

Read 5 holding registers, starting at address 2. The address parameter is the starting
address of the holding registers to read, and the count parameter is the number of
holding registers to read.

read(m,'holdingregs',2,5)

ans =

 27640 60013 51918 62881 34836

Specify Server ID and Precision Options for the Read Operation

You can read any of the four types of targets and also specify the optional parameters for
server ID, and you can specify precision for the two types of registers. You can set either
option by itself or set both the serverId option and the precision option together.
Both options should be listed after the required arguments.

Read 8 holding registers starting at address 1 using a precision of 'uint32' from Server
ID 3.

read(m,'holdingregs',1,8,3,'uint32');

• “Create a MODBUS Connection” on page 11-4
• “Configure Properties for MODBUS Communication” on page 11-7
• “Read Data from a MODBUS Server” on page 11-11
• “Read Temperature from a Remote Temperature Sensor” on page 11-16

Input Arguments
target — Target area to read
character vector | string

 read

23-185

Target area to read, specified as a character vector or string. You can perform a
MODBUS read operation on four types of targets: coils, inputs, input registers, and
holding registers, corresponding to the values 'coils', 'inputs', 'inputregs', and
'holdingregs'. Target must be the first argument after the object name. This example
reads 8 coils starting at address 1.
Example: read(m,'coils',1,8)
Data Types: char

address — Starting address to read from
double

Starting address to read from, specified as a double. Address must be the second
argument after the object name. This example reads 10 coils starting at address 2.
Example: read(m,'coils',2,10)
Data Types: double

count — Number of values to read
double

Number of values to read, specified as a double. Count must be the third argument after
the object name. If you do not specify a count, the default of 1 is used. This example
reads 12 coils starting at address 2.
Example: read(m,'coils',2,12)
Data Types: double

serverId — Address of the server to send the read command to
double

Address of the server to send the read command to, specified as a double. Server ID must
be specified after the object name, target, address, and count. If you do not specify a
serverId, the default of 1 is used. Valid values are 0-247, with 0 being the broadcast
address. This example reads 8 coils starting at address 1 from server ID 3.
Example: read(m,'coils',1,8,3);
Data Types: double

precision — Data format of the register being read from on the MODBUS server
character vector | string

23 Functions — Alphabetical List

23-186

Data format of the register being read from on the MODBUS server, specified as a
character vector or string. Precision must be specified after the object name, target,
address, and count. Valid values are 'uint16', 'int16', 'uint32', 'int32',
'uint64', 'int64', 'single', and 'double'. This argument is optional, and the
default is 'uint16'.

Note that precision does not refer to the return type, which is always 'double'. It
specifies how to interpret the register data.

This example reads 6 holding registers starting at address 2 using a precision of
'uint32'.
Example: read(m,'holdingregs',2,6,'uint32');
Data Types: char

See Also
maskWrite | modbus | write | writeRead

Topics
“Create a MODBUS Connection” on page 11-4
“Configure Properties for MODBUS Communication” on page 11-7
“Read Data from a MODBUS Server” on page 11-11
“Read Temperature from a Remote Temperature Sensor” on page 11-16

Introduced in R2017a

 read

23-187

readasync
Read data asynchronously from instrument

Syntax
readasync(obj)
readasync(obj,size)

Arguments
obj An interface object.
size The number of bytes to read from the instrument.

Description
readasync(obj) initiates an asynchronous read operation.

readasync(obj,size) asynchronously reads, at most, the number of bytes specified by
size. If size is greater than the difference between the InputBufferSize property
value and the BytesAvailable property value, an error is returned.

Examples
This example creates the serial port object s, connects s to a Tektronix TDS 210
oscilloscope, configures s on a Windows machine to read data asynchronously only if
readasync is issued, and configures the instrument to return the peak-to-peak value of
the signal on channel 1.
s = serial('COM1');
fopen(s)
s.ReadAsyncMode = 'manual';
fprintf(s,'Measurement:Meas1:Source CH1')
fprintf(s,'Measurement:Meas1:Type Pk2Pk')
fprintf(s,'Measurement:Meas1:Value?')

23 Functions — Alphabetical List

23-188

Initially, there is no data in the input buffer.

s.BytesAvailable
ans =
 0

Begin reading data asynchronously from the instrument using readasync. When the
read operation is complete, return the data to the MATLAB workspace using fscanf.

readasync(s)
s.BytesAvailable
ans =
 15
out = fscanf(s)
out =
2.0399999619E0
fclose(s)

Tips
Before you can read data, you must connect obj to the instrument with the fopen
function. A connected interface object has a Status property value of open. An error is
returned if you attempt to perform a read operation while obj is not connected to the
instrument.

For serial port, TCPIP, UDP, and VISA-serial objects, you should use readasync only
when you configure the ReadAsyncMode property to manual. readasync is ignored if
used when ReadAsyncMode is continuous.

The TransferStatus property indicates if an asynchronous read or write operation is in
progress. For all interface objects, you cannot use readasync while a read operation is in
progress. For serial port and VISA-serial objects, you can write data while an
asynchronous read is in progress because serial ports have separate read and write pins.
You can stop asynchronous read and write operations with the stopasync function.

You can monitor the amount of data stored in the input buffer with the
BytesAvailable property. Additionally, you can use the BytesAvailableFcn property
to execute a callback function when the terminator or the specified amount of data is
read.

 readasync

23-189

Asynchronous operation is not supported for NI VISA objects on the UNIX platform. So if
you use the readasync function with a NI VISA object, you will get an error.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Rules for Completing an Asynchronous Read Operation

An asynchronous read operation with readasync completes when one of these conditions
is met:

• The terminator is read. For serial port, TCPIP, UDP, and VISA-serial objects, the
terminator is given by the Terminator property. Note that for UDP objects,
DatagramTerminateMode must be off.

For all other interface objects except VISA-RSIB, the terminator is given by the
EOSCharCode property.

• The time specified by the Timeout property passes.
• The specified number of bytes is read.
• The input buffer is filled.
• A datagram has been received (UDP objects only if DatagramTerminateMode is on)
• The EOI line is asserted (GPIB and VXI instruments only).

For serial port, TCPIP, UDP, and VISA-serial objects, readasync can be slow because it
checks for the terminator. To increase speed, you might want to configure
ReadAsyncMode to continuous and continuously return data to the input buffer as
soon as it is available from the instrument.

See Also
BytesAvailable | BytesAvailableFcn | ReadAsyncMode | Status | TransferStatus |
fopen | stopasync

Introduced before R2006a

23 Functions — Alphabetical List

23-190

readWaveform
Returns waveform displayed on scope

Syntax
w = readWaveform(myScope);
w = readWaveform(myScope, 'acquisition', true);
w = readWaveform(myScope, 'acquisition', false);

Description
w = readWaveform(myScope); returns waveform(s) displayed on the scope screen.
Retrieves the waveform(s) from enabled channel(s). By default it downloads the captured
waveform from the scope without acquisition.

w = readWaveform(myScope, 'acquisition', true); initiates an acquisition and
returns waveform(s) from the oscilloscope.

w = readWaveform(myScope, 'acquisition', false); gets waveform from the
enabled channel without acquisition

This function can only be used with the oscilloscope object. You can use the
getWaveform function to download the current waveform from the scope or to initiate
the waveform and capture it. See the examples below for the three possible use cases.

Note This is the getWaveform function. In R2017a the name changed from getWaveform
to readWaveform. The getWaveform function will continue to be supported.

Examples
Use this example if you have captured the waveform(s) using the oscilloscope's front
panel and want to download it to the Instrument Control Toolbox for further analysis.

 readWaveform

23-191

 o = oscilloscope()
 set (o, 'Resource', 'instrumentResourceString');
 connect(o);
 w = getWaveform(o);

Replace 'instrumentResourceString' with the resource string for your instrument.

Use this example to get the waveform from a circuit output (without configuring the
trigger) and download it to the Instrument Control Toolbox to check it.

 o = oscilloscope()
 set (o, 'Resource', 'instrumentResourceString');
 connect(o);
 enableChannel(o,'Channel1');
 w = getWaveform(o);

Replace 'instrumentResourceString' with the resource string for your instrument.

Use this example to capture synchronized input/output signals of a filter circuit when a
certain trigger condition is met, stop the acquisition, and download the waveforms to the
Instrument Control Toolbox.

 o = oscilloscope()
 set (o, 'Resource', 'instrumentResourceString');
 connect(o);
 set (o, 'TriggerMode','normal');
 set (o, 'enableChannel', {'Channel1','Channel2'});
 [w1, w2] = readWaveform(o, 'acqusition', true);

Replace 'instrumentResourceString' with the resource string for your instrument.

See Also

Topics
“The Quick-Control Interfaces” on page 14-25

Introduced in R2011b

23 Functions — Alphabetical List

23-192

record
Record data and event information to file

Syntax
record(obj)
record(obj,'switch')

Arguments
obj An instrument object.
'switch' Switch recording capabilities on or off.

Description
record(obj) toggles the recording state for obj.

record(obj,'switch') initiates or terminates recording for obj. switch can be on or
off. If switch is on, recording is initiated. If switch is off, recording is terminated.

Examples
This example creates the GPIB object g, connects g to the instrument, and configures g
to record detailed information to the disk file MyGPIBFile.txt.

g = gpib('ni',0,1);
fopen(g)
g.RecordDetail = 'verbose';
g.RecordName = 'MyGPIBFile.txt';

Initiate recording, write the *IDN? command to the instrument, and read back the
identification information.

 record

23-193

record(g,'on')
fprintf(g,'*IDN?')
out = fscanf(g);

Terminate recording and disconnect g from the instrument.

record(g,'off')
fclose(g)

Tips
Before you can record information to disk, obj must be connected to the instrument with
the fopen function. A connected instrument object has a Status property value of open.
An error is returned if you attempt to record information while obj is not connected to
the instrument. Each instrument object must record information to a separate file.
Recording is automatically terminated when obj is disconnected from the instrument
with fclose.

The RecordName and RecordMode properties are read-only while obj is recording, and
must be configured before using record.

For a detailed description of the record file format and the properties associated with
recording data and event information to a file, refer to “Debugging: Recording
Information to Disk” on page 17-5.

See Also
RecordMode | RecordName | RecordStatus | Status | fclose | fopen | propinfo

Introduced before R2006a

23 Functions — Alphabetical List

23-194

remove
Remove entry from IVI configuration store object

Syntax
remove(obj, 'type', 'name')
remove(obj, struct)

Arguments
obj IVI configuration store object
'type' Type of entry being removed; type can be DriverSession,

HardwareAsset, or LogicalName
'name' Name of the DriverSession, HardwareAsset, or LogicalName to

be removed
struct Structure defining entries to be removed

Description
remove(obj, 'type', 'name') removes an entry of type, type, with name, name,
from the IVI configuration store object, obj. type can be HardwareAsset,
DriverSession, or LogicalName. If an entry of type, type, with name, name, does not
exist, an error will occur.

remove(obj, struct) removes an entry using the fields in struct. If an entry with
the type and name field in struct does not exist, an error will occur.

The modified configuration store object, obj, can be saved to the configuration store data
file with the commit function.

If you attempt to remove an entry that is actively referenced by another entry, an error
will occur. For example, you cannot remove a hardware asset that is currently referenced
by a driver session.

 remove

23-195

Examples
c = iviconfigurationstore;
remove(c, 'HardwareAsset', 'gpib1');

See Also
add | commit | iviconfigurationstore | update

Introduced before R2006a

23 Functions — Alphabetical List

23-196

resources
List of available instrument resources for Quick-Control interfaces

Syntax
ResourceList = resources(rf)

Description
ResourceList = resources(rf) lists the resources for RF signal generator object rf.
It returns a cell array of resources for the Quick-Control RF Signal Generator, Quick-
Control Oscilloscope, or Quick-Control Function Generator objects.

Examples

List Resources and Connect to RF Signal Generator

The resources function lists resources available for any of the Quick-Control interface
objects: RF signal generator (rfsiggen), oscilloscope (oscilloscope), or function generator
(fgen). This example uses Quick-Control RF Signal Generator, but the function also
works in the same way for the other two object types.

Create an RF signal generator object without assigning the resource or driver.

rf = rfsiggen;

List the resources.

ResourceList = resources(rf)

ResourceList =

 3x1 cell array

 resources

23-197

 {'ASRL::COM1'}
 {'ASRL::COM3'}
 'TCPIP0::172.28.22.99::inst0::INSTR'

In this case, it finds two COM ports that could host an instrument, and the VISA
resource string of an RF signal generator.

Set the RF signal generator resource using the Resource property, which is the VISA
resource string.

rf.Resource = 'TCPIP0::172.28.22.99::inst0::INSTR';

Set the RF Signal Generator driver using the Driver property, which is a string
containing the name of your instrument driver.

rf.Driver = 'AgRfSigGen';

You can now connect to the instrument.

connect(rf);

• “Download and Generate Signals with RF Signal Generator” on page 14-59

Output Arguments
ResourceList — List of instrument resources
cell array of strings

List of instrument resources, returned as a cell array of strings. It represents the VISA
resource string for the instrument. The resources function can list resources available
for any of the Quick-Control interface objects: RF signal generator, oscilloscope, or
function generator.

See Also
download | drivers | rfsiggen | start

Topics
“Download and Generate Signals with RF Signal Generator” on page 14-59
“Quick-Control RF Signal Generator Functions” on page 14-54

23 Functions — Alphabetical List

23-198

“Quick-Control RF Signal Generator Properties” on page 14-56

Introduced in R2017b

 resources

23-199

resolvehost
Network name or network address

Syntax
name = resolvehost('host')
[name,address] = resolvehost('host')
out = resolvehost('host','returntype')

Arguments
'host' The network name or network address of host.
'returntype' Return either the name or address of host
name Network name of host
address Network address of host

Description
name = resolvehost('host') returns the name of the specified host. You can specify
host as either a network name or a network address. For example,
www.yourdomain.com is a network name and 144.212.100.10 is a network address.

[name,address] = resolvehost('host') returns the name and address of the
specified host.

out = resolvehost('host','returntype') returns the host name if returntype
is name and returns the host address if returntype is address.

Examples
The following commands show how you can return the host name and address.

23 Functions — Alphabetical List

23-200

[name,address] = resolvehost('144.212.100.10')
name = resolvehost('144.212.100.10','name')
address = resolvehost('www.yourdomain.com','address')

See Also
tcpip | udp

Introduced before R2006a

 resolvehost

23-201

rfsiggen
Create Quick-Control RF Signal Generator object

Syntax
rf = rfsiggen()
rf = rfsiggen(Resource)
rf = rfsiggen(Resource, Driver)

Description
rf = rfsiggen() creates the RF signal generator object rf to communicate with an RF
signal generator instrument. You must specify a resource or a resource and driver later.

rf = rfsiggen(Resource) additionally specifies the Resource, and connects it to the
RF signal generator instrument designated by the resource. This is the VISA resource
string for the instrument.

rf = rfsiggen(Resource, Driver) additionally specifies the Driver, which is the
underlying driver to use with the instrument. If it is not specified, the driver is auto-
detected.

Examples

Create an RF Signal Generator Object

You can create the rfsiggen object without setting the resource, and then set it after
object creation.

Create the RF Signal Generator object with no arguments.

rf = rfsiggen()

Find available resources using the resources function.

23 Functions — Alphabetical List

23-202

targets = resources(rf)

It returns a list of possible VISA resource strings, for example
TCPIP0::172.28.22.99::inst0::INSTR.

Set the RF signal generator resource using the Resource property.

rf.Resource = 'TCPIP0::172.28.22.99::inst0::INSTR';

Connect to the instrument. When you assign the resource after object creation, you need
to explicitly connect to the instrument.

connect(rf);

Create an RF Signal Generator Object and Set Resource and Driver

You can create the rfsiggen object and set the resource and driver during object
creation. If those properties are valid, the object automatically connects to the
instrument.

Create the RF signal generator object and connect using the specified resource string and
driver.

rf = rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR','AgRfSigGen')

• “Download and Generate Signals with RF Signal Generator” on page 14-59

Input Arguments
Resource — VISA resource string for your instrument
string

VISA resource string for your instrument, specified as a string. Set this before connecting
to the instrument. Setting it during object creation is optional and can be used if you
know the resource string for your instrument. Otherwise, you can set it after object
creation.
Example: rf = rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR')
Data Types: char | string

 rfsiggen

23-203

Driver — Underlying driver to use with the instrument
string

Underlying driver to use with the instrument, specified as a string. Set this before
connecting to the instrument. If it is not specified, the driver is auto-detected.
Example: rf =
rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR','AgRFSigGen')
Data Types: char | string

See Also
download | drivers | resources | start

Topics
“Download and Generate Signals with RF Signal Generator” on page 14-59
“Quick-Control RF Signal Generator Functions” on page 14-54
“Quick-Control RF Signal Generator Properties” on page 14-56

Introduced in R2017b

23 Functions — Alphabetical List

23-204

save
Save instrument objects and variables to MAT-file

Syntax
save filename
save filename obj1 obj2 ...

Arguments
filename The MAT-file name.
obj1 obj2 ... Instrument objects or arrays of instrument objects.

Description
save filename saves all MATLAB variables to the MAT-file filename. If an extension
is not specified for filename, then a .mat extension is used.

save filename obj1 obj2 ... saves the instrument objects obj1 obj2 ... to the
MAT-file filename.

Examples
This example illustrates how to use the command form and the functional form of save.

s = serial('COM1');
set(s,'BaudRate',2400,'StopBits',1)
save MySerial1 s
set(s,'BytesAvailableFcn',@mycallback)
save('MySerial2','s')

 save

23-205

Tips
You can use save in the functional form as well as the command form shown above.
When using the functional form, you must specify the filename and instrument objects as
character vectors. For example, on a Windows machine, save the serial port object s to
the file MySerial.mat,

s = serial('COM1');
save('MySerial','s')

Any data that is associated with the instrument object is not automatically stored in the
MAT-file. For example, suppose there is data in the input buffer for obj. To save that
data to a MAT-file, you must bring the data into the MATLAB workspace using one of
the synchronous read functions, and then save the data to the MAT-file using a separate
variable name. You can also save data to a text file with the record function.

You return objects and variables to the MATLAB workspace with the load command.
Values for read-only properties are restored to their default values upon loading. For
example, the Status property is restored to closed. To determine if a property is read-
only, examine its reference pages or use the propinfo function.

See Also
Status | instrhelp | load | propinfo | record

Introduced before R2006a

23 Functions — Alphabetical List

23-206

scanstr
Read data from instrument, format as text, and parse

Syntax
A = scanstr(obj)
A = scanstr(obj,'delimiter')
A = scanstr(obj,'delimiter','format')
[A,count] = scanstr(...)
[A,count,msg] = scanstr(...)

Arguments
obj An interface object.
'delimiter' One or more delimiters used to parse the data.
'format' C language conversion specification.
A Data read from the instrument and formatted as text.
count The number of values read.
msg A message indicating if the read operation was unsuccessful.

Description
A = scanstr(obj) reads formatted data from the instrument connected to obj, parses
the data using both a comma and a semicolon delimiter, and returns the data to the cell
array A. Each element of the cell array is determined to be either a double or a character
vector.

A = scanstr(obj,'delimiter') parses the data into separate variables based on the
specified delimiter. delimiter can be a single character or a character vector array. If
delimiter is a character vector array, then each character in the array is used as a
delimiter.

 scanstr

23-207

A = scanstr(obj,'delimiter','format') converts the data according to the
specified format. A can be a matrix or a cell array depending on format. See the
textread help for complete details. format is a string containing C language conversion
specifications.

Conversion specifications involve the % character and the conversion characters d, i, o, u,
x, X, f, e, E, g, G, c, and s. See the sscanf file I/O format specifications or a C manual for
complete details.

If format is not specified, then the best format (either a double or a character vector) is
chosen.

[A,count] = scanstr(...) returns the number of values read to count.

[A,count,msg] = scanstr(...) returns a warning message to msg if the read
operation did not complete successfully.

Examples
Create the GPIB object g associated with a National Instruments board with index 0 and
primary address 2, and connect g to a Tektronix TDS 210 oscilloscope.

g = gpib('ni',0,2);
fopen(g)

Return identification information to separate elements of a cell array using the default
delimiters.
fprintf(g,'*IDN?');
idn = scanstr(g)
idn =
 'TEKTRONIX'
 'TDS 210'
 [0]
 'CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04'

Tips
Before you can read data from the instrument, it must be connected to obj with the
fopen function. A connected interface object has a Status property value of open. An

23 Functions — Alphabetical List

23-208

error is returned if you attempt to perform a read operation while obj is not connected to
the instrument.

If msg is not included as an output argument and the read operation was not successful,
then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read —
including the terminator — each time scanstr is issued.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
EOSCharCode | EOSMode | Status | Terminator | ValuesReceived | fopen | fscanf
| instrhelp | sscanf | textread

Introduced before R2006a

 scanstr

23-209

selftest
Run instrument self-test

Syntax
out = selftest(obj)

Arguments
obj A device object.
out The result of the self-test.

Description
out = selftest(obj) runs the self-test for the instrument associated with the device
object specified by obj. The result of the self-test is returned to out. Note that the test
result will vary based on the instrument.

Introduced before R2006a

23 Functions — Alphabetical List

23-210

serial
Create serial port object

Syntax
obj = serial('port')
obj = serial('port','PropertyName',PropertyValue,...)

Arguments
'port' The serial port name.
'PropertyName' A serial port property name.
PropertyValue A property value supported by PropertyName.
obj The serial port object.

Description
obj = serial('port') creates a serial port object associated with the serial port
specified by port. If port does not exist, or if it is in use, you will not be able to connect
the serial port object to the instrument with the fopen function.

obj = serial('port','PropertyName',PropertyValue,...) creates a serial port
object with the specified property names and property values. If an invalid property
name or property value is specified, an error is returned and the serial port object is not
created.

Examples
This example creates the serial port object s1 on a Windows machine associated with the
serial port COM1.

s1 = serial('COM1');

 serial

23-211

The Type, Name, and Port properties are automatically configured.

s1.Type
ans =
 serial

s1.Name
ans =
 Serial-COM1

s1.Port
ans =
 COM

To specify properties during object creation,

s2 = serial('COM2','BaudRate',1200,'DataBits',7);

Tips
At any time, you can use the instrhelp function to view a complete listing of properties
and functions associated with serial port objects.

instrhelp serial

When you create a serial port object, these property values are automatically configured:

• Type is given by serial.
• Name is given by concatenating Serial with the port specified in the serial

function.
• Port is given by the port specified in the serial function.

You can specify the property names and property values using any format supported by
the set function. For example, you can use property name/property value cell array
pairs. Additionally, you can specify property names without regard to case, and you can
make use of property name completion. For example, the following commands are all
valid.

s = serial('COM1','BaudRate',4800);
s = serial('COM1','baudrate',4800);
s = serial('COM1','BAUD',4800);

23 Functions — Alphabetical List

23-212

Before you can communicate with the instrument, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of open. An
error is returned if you attempt a read or write operation while obj is not connected to
the instrument. You can connect only one serial port object to a given serial port.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
Name | Port | Status | Type | fclose | fopen | propinfo | seriallist

Introduced before R2006a

 serial

23-213

serialbreak
Send break to instrument

Syntax
serialbreak(obj)
serialbreak(obj,time)

Arguments
obj A serial port object.
time The duration of the break, in milliseconds.

Description
serialbreak(obj) sends a break of 10 milliseconds to the instrument connected to
obj.

serialbreak(obj,time) sends a break to the instrument with a duration, in
milliseconds, specified by time. Note that the duration of the break might be inaccurate
under some operating systems.

Tips
For some instruments, the break signal provides a way to clear the hardware buffer.

Before you can send a break to the instrument, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of open. An
error is returned if you attempt to send a break while obj is not connected to the
instrument.

serialbreak is a synchronous function, and blocks the command line until execution is
complete.

23 Functions — Alphabetical List

23-214

If you issue serialbreak while data is being asynchronously written, an error is
returned. In this case, you must call the stopasync function or wait for the write
operation to complete.

See Also
Status | fopen | stopasync

Introduced before R2006a

 serialbreak

23-215

set
Configure or display instrument object properties

Syntax
set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)

Arguments
obj An instrument object or an array of instrument objects.
'PropertyName' A property name for obj.
PropertyValue A property value supported by PropertyName.
PN A cell array of property names.
PV A cell array of property values.
S A structure with property names and property values.
props A structure array whose field names are the property names for

obj, or cell array of possible values.

Description
set(obj) displays all configurable property values for obj. If a property has a finite list
of possible character vector values, then these values are also displayed.

props = set(obj) returns all configurable properties and their possible values for obj
to props. props is a structure whose field names are the property names of obj, and

23 Functions — Alphabetical List

23-216

whose values are cell arrays of possible property values. If the property does not have a
finite set of possible values, then the cell array is empty.

set(obj,'PropertyName') displays the valid values for PropertyName if it possesses
a finite list of character vector values.

props = set(obj,'PropertyName') returns the valid values for PropertyName to
props. props is a cell array of possible character vector values or an empty cell array if
PropertyName does not have a finite list of possible values.

set(obj,'PropertyName',PropertyValue,...) configures multiple property values
with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of character
vectors PN to the corresponding values in the cell array PV. PN must be a vector. PV can
be m-by-n where m is equal to the number of instrument objects in obj and n is equal to
the length of PN.

set(obj,S) configures the named properties to the specified values for obj. S is a
structure whose field names are instrument object properties, and whose field values are
the values of the corresponding properties.

Examples
This example illustrates some of the ways you can use set to configure or return
property values for the GPIB object g.

g = gpib('ni',0,1);
set(g,'EOSMode','read','OutputBufferSize',50000)
set(g,{'EOSCharCode','RecordName'},{13,'sydney.txt'})
set(g,'EOIMode')
[{on} | off]

Tips
You can use any combination of property name/property value pairs, structure arrays,
and cell arrays in one call to set. Additionally, you can specify a property name without
regard to case, and you can make use of property name completion. For example, if g is a
GPIB object, then the following commands are all valid.

 set

23-217

set(g,'EOSMode')
set(g,'eosmode')
set(g,'EOSM')

See Also
get | instrhelp | propinfo

Introduced before R2006a

23 Functions — Alphabetical List

23-218

size
Size of instrument object array

Syntax
d = size(obj)
[m,n] = size(obj)
[m1,m2,m3,...,mn] = size(obj)
m = size(obj,dim)

Arguments
obj An instrument object or an array of instrument objects.
dim The dimension of obj.
d The number of rows and columns in obj.
m The number of rows in obj, or the length of the dimension specified

by dim.
n The number of columns in obj.
m1,m2,...,mn The length of the first N dimensions of obj.

Description
d = size(obj) returns the two-element row vector d containing the number of rows
and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in separate output
variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n dimensions of obj.

m = size(obj,dim) returns the length of the dimension specified by the scalar dim.
For example, size(obj,1) returns the number of rows.

 size

23-219

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
instrhelp | length

Introduced before R2006a

23 Functions — Alphabetical List

23-220

spi
Create SPI object

Syntax
S = spi(Vendor,BoardIndex,Port);

Description
S = spi(Vendor,BoardIndex,Port); constructs an spi object associated with
Vendor, BoardIndex, and Port. Vendor must be set to either 'aardvark', for use
with a Total Phase Aardvark adaptor, or to 'ni845x', for use with the NI-845x adaptor
board, to use this interface. BoardIndex specifies the board index of the hardware and is
usually 0. Port specifies the port number within the device and must be set to 0.

SPI, or Serial Peripheral Interface, is a synchronous serial data link standard that
operates in full duplex mode. Instrument Control Toolbox SPI support lets you open
connections with individual chips and to read and write over the connections to
individual chips using an Aardvark host adaptor.

The primary uses for the spi interface involve the write, read, and writeAndRead
functions for synchronously reading and writing binary data. To identify SPI devices in
the Instrument Control Toolbox, use the instrhwinfo function on the SPI interface,
called spi.

Once the SPI object is created, there are properties that can be used to change
communication settings. These includes properties for clock speed, clock phase, and clock
polarity. For a list of all the properties and information about setting them, see the link
for “Using Properties on the SPI Object” at the end of the Examples section.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

 spi

23-221

Examples

Communicate With SPI Device

This example shows how to create a SPI object and communicate with a SPI device, using
an Aardvark adaptor board.

Ensure that the Aardvark adaptor is installed so that you can use the spi interface, and
then look at the adaptor properties.

instrhwinfo('spi')
instrhwinfo('spi', 'aardvark')

ans =

 VendorName: 'aardvark'
 VendorDescription: 'Total Phase I2C/SPI Driver'
 VendorLibraryName: 'aardvark.dll'
 InstalledBoardIds: {[0]}
 BoardSerialNumbers: {'2237722838'}
 ObjectConstructors: {'spi('aardvark', 0, 0)'}

Construct a spi object called S using Vendor 'aardvark', with BoardIndex of 0, and
Port of 0.

S = spi('aardvark', 0, 0);

You can optionally change property settings such as BitRate, ClockPhase, or
ClockPolarity. For example, set the ClockPhase from the default of FirstEdge.

S.ClockPhase = 'SecondEdge'

For a list of all the properties and information about setting them, see the link for “Using
Properties on the SPI Object” at the end of the Examples section.

Connect to the chip.

connect(S);

Read and write to the chip.

% Create a variable containing the data to write
dataToWrite = [3 0 0 0];

23 Functions — Alphabetical List

23-222

% Write the binary data to the chip
write(S, dataToWrite);

% Create a variable to contain 5 bytes of returned data
numData = 5

% Read the binary data from the chip
read(S, numData)

Disconnect the SPI device and clean up by clearing the object.

disconnect(S);
clear('S');

• “Using Properties on the SPI Object” on page 10-17

Input Arguments
Vendor — Adaptor board vendor
'aardvark' | 'ni845x'

Adaptor board vendor, specified as the character vector 'aardvark' or 'ni845x'. You
need to use a Total Phase Aardvark adaptor or an NI-845x adaptor board to use the SPI
interface. You must specify this as the first argument when you create the spi object.
Example: S = spi('aardvark', 0, 0);
Data Types: char | string

BoardIndex — Board index of your hardware
0

Board index of your hardware, specified as a numeric value. This is usually 0. You must
specify this as the second argument when you create the spi object.
Example: S = spi('aardvark', 0, 0);
Data Types: double

Port — Port number of your hardware
0

 spi

23-223

Port number of your hardware, specified as the number 0. The Aardvark adaptor uses 0
as the port number. You must specify this as the third argument when you create the
spi object.
Example: S = spi('aardvark', 0, 0);
Data Types: double

See Also

Topics
“Using Properties on the SPI Object” on page 10-17

Introduced in R2013b

23 Functions — Alphabetical List

23-224

spoll
Perform serial poll on GPIB objects

Syntax
out = spoll(obj)
out = spoll(obj,val)
[out] = spoll(obj)
[out,statusByte] = spoll(obj)
[out] = spoll(obj,val)
[out,statusByte] = spoll(obj,val)

Arguments
obj A GPIB object or an array of GPIB objects.
val A numeric array containing the indices of the objects in obj, that must

be ready for servicing before control is returned to the MATLAB
Command Window.

out The GPIB objects ready for servicing.
statusByte The service request (SRQ) line status byte.

Description
out = spoll(obj) performs a serial poll on the instruments associated with obj. out
contains the GPIB objects that are ready for servicing. If no objects are ready for
servicing, then out is empty.

out = spoll(obj,val) performs a serial poll and waits until the instruments
specified by val are ready for servicing. An error is returned if a value specified in val
does not match an index value in obj.

Using this syntax, spoll blocks access to the MATLAB Command Window until the
objects specified by val are ready for servicing, or a timeout occurs for each object
specified by val. The timeout period is specified by the Timeout property.

 spoll

23-225

[out] = spoll(obj) returns the object or an array of objects.

[out,statusByte] = spoll(obj) returns the status byte along with the object or an
array of objects.

[out] = spoll(obj,val) returns the object and the value specified in the index value
of the object.

[out,statusByte] = spoll(obj,val) returns the status byte along with the object
and the value specified in the index value of the object.

Examples
If obj is a four-element array and val is set to [1 3], then spoll will block access to
the MATLAB Command Window until the instruments connected to the first and third
GPIB objects have both asserted their SRQ line, or a timeout occurs.

Example of second output argument:

 g1 = gpib('ni', 0, 1);
 g2 = gpib('ni', 0, 2);
 fopen([g1 g2]);
 out1 = spoll(g1);
 out2 = spoll([g1 g2], 1);
 out3 = spoll([g1 g2], [1 2])
 [out4 statusBytes] = spoll([g1 g2])
 [out5 statusBytes] = spoll([g1 g2], 2)
 fclose([g1 g2]);

Tips
Serial polling is a method of obtaining specific information from GPIB objects when they
request service. When you perform a serial poll, out contains the GPIB object that has
asserted its SRQ line.

If obj is an array of GPIB objects

• Each element of obj must have the same BoardIndex property value.
• Each element of obj is polled to determine if the instrument is ready for servicing.

23 Functions — Alphabetical List

23-226

If you specify a second output argument when you call an spoll, full serial poll bytes are
returned in addition to the SRQ line status in the second argument.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
BoardIndex | Timeout | gpib | length | spoll (visa)

Introduced before R2006a

 spoll

23-227

start
Enables RF signal generator signal output and modulation output

Syntax
start(rf, CenterFrequency, OutputPower, LoopCount)

Description
start(rf, CenterFrequency, OutputPower, LoopCount) enables signal output
and modulation output for the RF signal generator rf. All three arguments are required.

Examples

Start RF Signal Generator Signal and Modulation Output

Use the start function on an RF signal generator object to start signal output and
modulation output. It takes a double value for each of the three required arguments:
CenterFrequency specified in Hz, OutputPower specified in dB, and LoopCount,
which represents the number of times the waveform should be repeated.

Create an rfsiggen object to communicate with an RF signal generator, using the VISA
resource string and driver associated with your own instrument.

rf = rfsiggen('TCPIP0::172.28.22.99::inst0::INSTR','AgRfSigGen')

When you designate the Resource and Driver properties during object creation, it
automatically connects to the instrument.

Assign the CenterFrequency, OutputPower, and LoopCount variables to use in the
signal generation.

23 Functions — Alphabetical List

23-228

CenterFrequency = 4000000
OutputPower = 0
LoopCount = inf

Start the signal generation.

start(rf, CenterFrequency, OutputPower, LoopCount)

• “Download and Generate Signals with RF Signal Generator” on page 14-59

Input Arguments
CenterFrequency — Center frequency for the waveform
double

Center frequency for the waveform, specified as a double. This value, in Hz, should be the
first argument after the object name.
Example: start(rf, CenterFrequency, OutputPower, LoopCount)
Data Types: double

OutputPower — Output power for the RF signal generation
double

Output power for the RF signal generation, specified as a double. This value, in dB,
should be the second argument after the object name.
Example: start(rf, CenterFrequency, OutputPower, LoopCount)
Data Types: double

LoopCount — Number of times to repeat waveform
double

Number of times to repeat waveform, specified as a double. This value should be the
third argument after the object name.
Example: start(rf, CenterFrequency, OutputPower, LoopCount)
Data Types: double

 start

23-229

See Also
download | drivers | resources | rfsiggen

Topics
“Download and Generate Signals with RF Signal Generator” on page 14-59
“Quick-Control RF Signal Generator Functions” on page 14-54
“Quick-Control RF Signal Generator Properties” on page 14-56

Introduced in R2017b

23 Functions — Alphabetical List

23-230

spoll (visa)
Perform serial poll on VISA objects

Syntax
out = spoll(obj)
out = spoll(obj,val)
[out] = spoll(obj)
[out,statusByte] = spoll(obj)
[out] = spoll(obj,val)
[out,statusByte] = spoll(obj,val)

Arguments
obj A VISA object or an array of VISA objects.
val A numeric array containing the indices of the objects in obj, that must

be ready for servicing before control is returned to the MATLAB
Command Window.

out The VISA objects ready for servicing.
statusByte The service request (SRQ) line status byte.

Description
out = spoll(obj) performs a serial poll on the instruments associated with obj. out
contains the VISA objects that are ready for servicing. If no objects are ready for
servicing, then out is empty.

out = spoll(obj,val) performs a serial poll and waits until the instruments
specified by val are ready for servicing. An error is returned if a value specified in val
does not match an index value in obj.

Using this syntax, spoll blocks access to the MATLAB Command Window until the
objects specified by val are ready for servicing, or a timeout occurs for each object
specified by val. The timeout period is specified by the Timeout property.

 spoll (visa)

23-231

[out] = spoll(obj) returns the object or an array of objects.

[out,statusByte] = spoll(obj) returns the status byte along with the object or an
array of objects.

[out] = spoll(obj,val) returns the object and the value specified in the index value
of the object.

[out,statusByte] = spoll(obj,val) returns the status byte along with the object
and the value specified in the index value of the object.

Examples
If obj is a four-element array and val is set to [1 3], then spoll will block access to
the MATLAB Command Window until the instruments connected to the first and third
VISA objects have both requested servicing, or a timeout occurs.

Example of second output argument:
v1 = visa('agilent', 'TCPIP0::yourdomainname.com::inst0::INSTR');
v2 = visa('agilent', 'TCPIP0::yourdomainname.com::inst01::INSTR');
fopen([v1 v2]);
out1 = spoll(v1);
out2 = spoll([v1 v2], 1);
out3 = spoll([v1 v2], [1 2])
[out4 statusBytes] = spoll([v1 v2])
[out5 statusBytes] = spoll([v1 v2], 2)
fclose([v1 v2]);

Tips
Serial polling is a method of obtaining specific information from VISA objects when they
request service. When you perform a serial poll, out contains the VISA object that have
requested servicing.

If obj is an array of VISA objects

• Each element of obj must have the same BoardIndex property value.
• Each element of obj is polled to determine if the instrument is ready for servicing.

If you specify a second output argument when you call an spoll, full serial poll bytes are
returned in addition to the SRQ line status in the second argument.

23 Functions — Alphabetical List

23-232

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
BoardIndex | Timeout | spoll | visa

Introduced in R2010a

 spoll (visa)

23-233

stopasync
Stop asynchronous read and write operations

Syntax
stopasync(obj)

Arguments
obj An interface object or an array of interface objects.

Description
stopasync(obj) stops any asynchronous read or write operation that is in progress for
obj.

Tips
You can write data asynchronously using the fprintf or fwrite functions. You can
read data asynchronously using the readasync function, or by configuring the
ReadAsyncMode property to continuous (serial port, TCPIP, UDP, and VISA-serial
objects). In-progress asynchronous operations are indicated by the TransferStatus
property.

If obj is an array of interface objects and one of the objects cannot be stopped, the
remaining objects in the array are stopped and a warning is returned. After an object
stops,

• Its TransferStatus property is configured to idle.
• Its ReadAsyncMode property is configured to manual (serial port, TCPIP, UDP, and

VISA-serial objects).
• The data in its output buffer is flushed.

23 Functions — Alphabetical List

23-234

Data in the input buffer is not flushed. You can return this data to the MATLAB
workspace using any of the synchronous read functions. If you execute the readasync
function, or configure the ReadAsyncMode property to continuous, then the new data
is appended to the existing data in the input buffer.

See Also
ReadAsyncMode | TransferStatus | fprintf | fwrite | readasync

Introduced before R2006a

 stopasync

23-235

tcpip
Create TCPIP object

Syntax
obj = tcpip('rhost')
obj = tcpip('rhost',rport)
obj = tcpip(...,'PropertyName',PropertyValue,...)
obj = tcpip('localhost', 30000, 'NetworkRole', 'client')

Arguments
'rhost' The remote host.
rport The remote port.
'NetworkRole' Enables support for Server Sockets, using two values, client

or server, to establish a connection as the client or the server.
'PropertyName' A TCPIP property name.
PropertyValue A property value supported by PropertyName.
obj The TCPIP object.

Description
obj = tcpip('rhost') creates a TCPIP object, obj, associated with remote host
rhost and the default remote port value of 80.

obj = tcpip('rhost',rport) creates a TCPIP object with remote port value rport.

obj = tcpip(...,'PropertyName',PropertyValue,...) creates a TCPIP object
with the specified property name/property value pairs. If an invalid property name or
property value is specified, the object is not created.

obj = tcpip('localhost', 30000, 'NetworkRole', 'client') creates a
TCPIP object, obj, that is a client interface for a server socket.

23 Functions — Alphabetical List

23-236

Examples
Start a TCP/IP echo server and create a TCPIP object.

echotcpip('on',4012)
t = tcpip('localhost',4012);

Connect the TCPIP object to the host.

fopen(t)

Write to the host and read from the host.

fwrite(t,65:74)
A = fread(t, 10);

Disconnect the TCPIP object from the host and stop the echo server.

fclose(t)
echotcpip('off')

Tips
At any time, you can use the instrhelp function to view a complete listing of properties
and functions associated with TCPIP objects.

instrhelp tcpip

When you create a TCPIP object, these property values are automatically configured:

• Type is given by tcpip.
• Name is given by concatenating TCPIP with the remote host name specified in the

tcpip function.
• RemoteHost and RemotePort are given by the values specified in the tcpip

function.

You can specify the property names and property values using any format supported by
the set function. For example, you can use property name/property value cell array
pairs. Additionally, you can specify property names without regard to case, and you can
make use of property name completion. For example, the following commands are all
valid.

 tcpip

23-237

t = tcpip('144.212.113.252','InputBufferSize',1024);
t = tcpip('144.212.113.252','inputbuffersize',1024);
t = tcpip('144.212.113.252','INPUT',1024);

When the TCPIP object is constructed, the Status property value is closed. Once the
object is connected to the host with the fopen function, the Status property is
configured to open.

The default local host in multihome hosts is the system's default. The LocalPort
property defaults to a value of [] and it causes any free local port to be used. LocalPort
is updated when fopen is issued.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
LocalHost | LocalPort | LocalPortMode | Name | NetworkRole | RemoteHost |
RemotePort | Status | Type | fopen | sendmail | udp | urlread | urlwrite

Topics
“Communicate Using TCP/IP Server Sockets” on page 7-64

Introduced before R2006a

23 Functions — Alphabetical List

23-238

tmtool
Open Test & Measurement Tool

Syntax
tmtool

Description
tmtool starts the Test & Measurement Tool. The Test & Measurement Tool displays the
resources (hardware, drivers, interfaces, etc.) accessible to the toolboxes that support the
tool, and enables you to configure and communicate with those resources.

You use the Test & Measurement Tool to manage your instrument control session. This
tool enables you to

• Search for available hardware and drivers
• Create instrument objects
• Connect to an instrument
• Configure instrument settings
• Write data to an instrument
• Read data from an instrument
• Save a log of your session as a file

For a full description of the Test & Measurement Tool with examples, see “Test &
Measurement Tool Overview” on page 18-2.

See Also
midedit | midtest

Introduced before R2006a

 tmtool

23-239

trigger
Send trigger message to instrument

Syntax
trigger(obj)

Arguments
obj A GPIB, VISA-GPIB, or VISA-VXI object.

Description
trigger(obj) sends a trigger message to the instrument connected to obj.

Tips
Before you can use trigger, obj must be connected to the instrument with the fopen
function. A connected interface object has a Status property value of open. An error is
returned if you attempt to use trigger while obj is not connected to the instrument.

For GPIB and VISA-GPIB objects, the Group Execute Trigger (GET) message is sent to
the instrument.

For VISA-VXI objects, if the TriggerType property is configured to software, the Word
Serial Trigger command is sent to the instrument. If TriggerType is configured to
hardware, a hardware trigger is sent on the line specified by the TriggerLine
property.

See Also
Status | TriggerLine | TriggerType | fopen

23 Functions — Alphabetical List

23-240

Introduced before R2006a

 trigger

23-241

udp
Create UDP object

Syntax
obj = udp('')
obj = udp('rhost')
obj = udp('rhost',rport)
obj = udp(...,'PropertyName',PropertyValue,...)

Arguments
'rhost' The remote host.
rport The remote port.
'PropertyName' A UDP property name.
PropertyValue A property value supported by PropertyName.
obj The UDP object.

Description
obj = udp('') creates a UDP object, obj, not associated with a remote host. obj =
udp('rhost') creates a UDP object associated with remote host rhost.

obj = udp('rhost',rport) creates a UDP object with remote port value, rport. The
default remote port is 9090.

obj = udp(...,'PropertyName',PropertyValue,...) creates a UDP object with
the specified property name/property value pairs. If an invalid property name or property
value is specified, the object is not created.

23 Functions — Alphabetical List

23-242

Examples
Start the echo server and create a UDP object.

echoudp('on',4012)
u = udp('127.0.0.1',4012);

Connect the UDP object to the host.

fopen(u)

Write to the host and read from the host.

fwrite(u,65:74)
A = fread(u,10);

Stop the echo server and disconnect the UDP object from the host.

echoudp('off')
fclose(u)

Tips
At any time, you can use the instrhelp function to view a complete listing of properties
and functions associated with UDP objects.

instrhelp udp

When you create a UDP object, these properties are automatically configured:

• Type is given by udp.
• Name is given by concatenating UDP with the remote host name specified in the udp

function.
• RemoteHost and RemotePort are given by the values specified in the udp function.

You can specify the property names and property values using any format supported by
the set function. For example, you can use property name/property value cell array
pairs. Additionally, you can specify property names without regard to case, and you can
make use of property name completion. For example, the following commands are all
valid.

 udp

23-243

u = udp('144.212.113.252','InputBufferSize',1024);
u = udp('144.212.113.252','inputbuffersize',1024);
u = udp('144.212.113.252','INPUT',1024);

The UDP object must be bound to the local socket with the fopen function. The default
remote port is 9090. The default local host in multihome hosts is the system's default.
The LocalPort property defaults to a value of [] and it causes any free local port to be
used. LocalPort is updated when fopen is issued. When the UDP object is constructed,
the Status property value is closed. Once the object is bound to the local socket with
fopen, Status is configured to open.

The maximum packet size for reading is 8192 bytes. The input buffer can hold as many
packets as defined by the InputBufferSize property value. You can write any data size
to the output buffer. The data will be sent in packets of at most 4096 bytes.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

See Also
LocalHost | LocalPort | LocalPortMode | Name | RemoteHost | RemotePort | Status |
Type | fopen

Introduced before R2006a

23 Functions — Alphabetical List

23-244

update
Update entry of IVI configuration store object

Syntax
update(obj, 'type', 'name', 'P1', V1, ...)
update(obj, struct)

Arguments
obj IVI configuration store object.
'type' Type of entry; type can be HardwareAsset, DriverSession, or

LogicalName.
'name' Name of the DriverSession, HardwareAsset, or LogicalName to

be updated.
'P1' First parameter for updated entry; other parameter-value pairs may

follow.
V1 Value for first parameter.
struct Structure defining entry fields to be updated.

Description
update(obj, 'type', 'name', 'P1', V1, ...) updates an entry of type, type,
with name, name, in IVI configuration store object, obj, using the specified parameter-
value pairs. type can be HardwareAsset, DriverSession, or LogicalName.

If an entry of type, type with name, name does not exist, an error will occur.

Valid parameters for a DriverSession are listed below. The default value for on/off
parameters is off.

 update

23-245

Parameter Value Description
Name character

vector
A unique name for the driver session.

SoftwareModule character
vector

The name of a software module entry in
the configuration store.

HardwareAsset character
vector

The name of a hardware asset entry in the
configuration store.

Description Any character
vector

Description of driver session

VirtualNames structure A struct array containing virtual name
mappings

Cache on/off Enable caching if the driver supports it.
DriverSetup Any character

vector
This value is software module dependent

InterchangeCheck on/off Enable driver interchangeability checking,
if supported

QueryInstrStatus on/off Enable instrument status querying by the
driver

RangeCheck on/off Enable extended range checking by the
driver, if supported

RecordCoercions on/off Enable recording of coercions by the
driver, if supported

Simulate on/off Enable simulation by the driver

Valid fields for HardwareAsset are
Parameter Value Description
Name character

vector
A unique name for the hardware asset

Description Any character
vector

Description of hardware asset

IOResourceDescriptor character
vector

The I/O address of the hardware asset

Valid fields for LogicalName are

23 Functions — Alphabetical List

23-246

Parameter Value Description
Name character

vector
A unique name for the logical name

Description Any character
vector

Description of hardware asset

Session character
vector

The name of a driver session entry in the
configuration store

update(obj, struct) updates the entry using the fields in struct. If an entry with
the type and name field in struct does not exist, an error will occur. Note that the name
field cannot be updated using this syntax.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Examples
Update the Description parameter of the driver session named ScopeSession in the
IVI configuration store object named c.
c = iviconfigurationstore;
update(c, 'DriverSession', 'ScopeSession', 'Description', ...
'A session.');

See Also
add | commit | iviconfigurationstore | remove

Introduced before R2006a

 update

23-247

visa
Create VISA object

Syntax
obj = visa('vendor','rsrcname')

Arguments
'vendor' A supported VISA vendor.
'rsrcname' The resource name of the VISA instrument.
'PropertyName' A VISA property name.
PropertyValue A property value supported by PropertyName.
obj The VISA object.

Description
obj = visa('vendor','rsrcname') creates the VISA object obj with a resource
name given by rsrcname for the vendor specified by vendor.

You must first configure your VISA resources in the vendor's tool first, and then you
create these VISA objects. Use instrhwinfo to find the commands to configure the
objects:

vinfo = instrhwinfo('visa','agilent');
vinfo.ObjectConstructorName

If an invalid vendor or resource name is specified, an error is returned and the VISA
object is not created. For a list of supported vales for vendor see Supported Vendor and
Resource Names. on page 5-3

23 Functions — Alphabetical List

23-248

Examples
Create a VISA-serial object connected to serial port COM1 using National Instruments
VISA interface.

vs = visa('ni','ASRL1::INSTR');

Create a VISA-GPIB object connected to board 0 with primary address 1 and secondary
address 30 using Agilent Technologies VISA interface.

vg = visa('agilent','GPIB0::1::30::INSTR');

Create a VISA-VXI object connected to a VXI instrument located at logical address 8 in
the first VXI chassis.

vv = visa('agilent','VXI0::8::INSTR');

Create a VISA-GPIB-VXI object connected to a GPIB-VXI instrument located at logical
address 72 in the second VXI chassis.

vgv = visa('agilent','GPIB-VXI1::72::INSTR');

Create a VISA-RSIB object connected to an instrument configured with IP address
192.168.1.33.

vr = visa('ni', 'RSIB::192.168.1.33::INSTR')

Create a VISA-TCPIP object connected to an instrument configured with IP address
216.148.60.170.

vt = visa('tek', 'TCPIP::216.148.60.170::INSTR')

Create a VISA-USB object connected to a USB instrument with manufacturer ID 0x1234,
model code 125, and serial number A22-5.

vu = visa('agilent', 'USB::0x1234::125::A22-5::INSTR')

Tips
At any time, you can use the instrhelp function to view a complete listing of properties
and functions associated with VISA objects.

instrhelp visa

 visa

23-249

You can specify the property names and property values using any format supported by
the set function. For example, you can use property name/property value cell array
pairs. Additionally, you can specify property names without regard to case, and you can
make use of property name completion. For example, the following commands are all
valid.

v = visa('ni','GPIB0::1::INSTR','SecondaryAddress', 96);
v = visa('ni','GPIB0::1::INSTR','secondaryaddress', 96);
v = visa('ni','GPIB0::1::INSTR','SECOND', 96);

Before you can communicate with the instrument, it must be connected to obj with the
fopen function. A connected VISA object has a Status property value of open. An error
is returned if you attempt a read or write operation while obj is not connected to the
instrument. You cannot connect multiple VISA objects to the same instrument.

Creating a VISA-GPIB Object

When you create a VISA-GPIB object, these properties are automatically configured:

• Type is given by visa-gpib.
• Name is given by concatenating VISA-GPIB with the board index, the primary

address, and the secondary address.
• BoardIndex, PrimaryAddress, SecondaryAddress, and RsrcName are given by

the values specified during object creation.

Creating a VISA-GPIB-VXI Object

When you create a VISA-GPIB-VXI object, these properties are automatically configured:

• Type is given by visa-gpib-vxi.
• Name is given by concatenating VISA-GPIB-VXI with the chassis index and the

logical address specified in the visa function.
• ChassisIndex, LogicalAddress, and RsrcName are given by the values specified

during object creation.
• BoardIndex, PrimaryAddress, and SecondaryAddress are given by the visa

driver after the object is connected to the instrument with fopen.

23 Functions — Alphabetical List

23-250

Creating a VISA-RSIB Object
When you create a VISA-RSIB object, these properties are automatically configured:

• Type is given by visa-rsib.
• Name is given by concatenating VISA-RSIB with the remote host specified in the visa

function.
• RemoteHost and RsrcName are given by the values specified during object creation.

Creating a VISA-Serial Object
When you create a VISA-serial object, these properties are automatically configured:

• Type is given by visa-serial.
• Name is given by concatenating VISA-Serial with the port specified in the visa

function.
• Port and RsrcName are given by the values specified during object creation.

Creating a VISA-TCPIP Object
When you create a VISA-TCPIP object, these properties are automatically configured:

• Type is given by visa-tcpip.
• Name is given by concatenating VISA-TCPIP with the board index, remote host, and

LAN device name specified in the visa function.
• BoardIndex, RemoteHost, LANNAme, and RsrcName are given by the values

specified during object creation.

Creating a VISA-USB Object
When you create a VISA-USB object, these properties are automatically configured:

• Type is given by visa-usb.
• Name is given by concatenating VISA-USB with the board index, manufacturer ID,

model code, serial number, and interface number specified in the visa function.
• BoardIndex, ManufacturerID, ModelCode, SerialNumber, InterfaceIndex,

and RsrcName are given by the values specified during object creation.

 visa

23-251

Creating a VISA-VXI Object

When you create a VISA-VXI object, these properties are automatically configured:

• Type is given by visa-vxi.
• Name is given by concatenating VISA-VXI with the chassis index and the logical

address specified in the visa function.
• ChassisIndex, LogicalAddress, and RsrcName are given by the values specified

during object creation.

See Also
BoardIndex | ChassisIndex | InterfaceIndex | LANName | LogicalAddress |
ManufacturerID | ModelCode | Name | Port | PrimaryAddress | RsrcName |
SecondaryAddress | SerialNumber | Status | Type | fclose | fopen | instrhelp |
instrhwinfo

Introduced before R2006a

23 Functions — Alphabetical List

23-252

write
Write binary data to SPI instrument

Syntax
write(OBJ, A)

Description
write(OBJ, A) writes the data, A, to the SPI instrument connected to interface object,
OBJ. OBJ must be a 1-by-1 SPI interface object. By default the 'uint8' precision is
used.

The interface object must be connected to the device with the connect function before
any data can be read from or written to the device, otherwise an error is returned. A
connected interface object has a ConnectionStatus property value of connected.

The SPI protocol operates in full duplex mode, input and output data transfers happen
simultaneously. For every byte written to the device, a byte is read back from the device.
This function will automatically flush the incoming data.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Examples
This example shows how to create a SPI object s, and read and write data.

Construct a spi object called s using Vendor 'aardvark', with BoardIndex of 0, and
Port of 0.

s = spi('aardvark', 0, 0);

 write

23-253

Connect to the chip.

connect(s);

Write to the chip.

dataToWrite = [2 0 0 255]
write(s, dataToWrite);

Disconnect the SPI device and clean up by clearing the object.

disconnect(s);
clear('s');

Introduced in R2013b

23 Functions — Alphabetical List

23-254

write
Perform a write operation to the connected MODBUS server

Syntax
write(m,target,address,values)
write(m,target,address,values,serverId,'precision')

Description
write(m,target,address,values) writes data to MODBUS object m to target type
target at the starting address address using the values to read values. You can write
to coils or holding registers.

write(m,target,address,values,serverId,'precision') additionally specifies
serverId, which is the address of the server to send the read command to, and the
precision, which is the data format of the register being read.

serverId can be used for both coils and holding registers, and precision can be used
for registers only. You can use either argument by itself, or use both arguments together
when the write target is holding registers.

Examples

Write Coils Over MODBUS

If the write target is coils, the function writes a contiguous sequence of 1–1968 coils to
either on or off in a remote device. A coil is a single output bit. A value of 1 indicates the
coil is on and a value of 0 means it is off.

Write to 4 coils, starting at address 8289. The address parameter is the starting address
of the coils to write to, and it is a double. The values parameter is an array of values to
write.

 write

23-255

write(m,'coils',8289,[1 1 0 1])

You can also create a variable for the values to write.

values = [1 1 0 1];
write(m,'coils',8289,values)

Write Holding Registers Over MODBUS

If the write target is holding registers, the function writes a block of 1–123 contiguous
registers in a remote device. Values whose representation is greater than 16 bits are
stored in consecutive register addresses.

Set the register at address 49153 to 2000.

write(m,'holdingregs',49153,2000)

Specify Server ID and Precision Options for the Write Operation

You can write to coils or holding registers and also specify the optional parameter for
server ID, and you can specify precision for holding registers. You can set either option
by itself or set both the serverId option and the precision option together. Both
options should be listed after the required arguments.

Write 3 values, starting at address 29473, at Server ID 2, converting to single
precision.

write(m,'holdingregs',29473,[928.1 50.3 24.4],2,'single')

• “Create a MODBUS Connection” on page 11-4
• “Configure Properties for MODBUS Communication” on page 11-7
• “Write Data to a MODBUS Server” on page 11-18

Input Arguments
target — Target area to write to
character vector | string

23 Functions — Alphabetical List

23-256

Target area to write to, specified as a character vector or string. You can perform a
MODBUS write operation on two types of targets: coils and holding registers, so you
must set the target type as either 'coils' or 'holdingregs'. Target must be the first
argument after the object name. This example writes to 4 coils starting at address 8289.
Example: write(m,'coils',8289,[1 1 0 1])
Data Types: char

address — Starting address to write to
double

Starting address to write to, specified as a double. Address must be the second argument
after the object name. This example writes to 6 coils starting at address 5200.
Example: write(m,'coils',5200,[1 1 0 1 1 0])
Data Types: double

values — Array of values to write
double | array of doubles

Array of values to write, specified as a double or array of doubles. values must be the
third argument after the object name. If the target is coils, valid values are 0 and 1. If
the target is holding registers, valid values must be in the range of the specified
precision. You can include the array of values in the syntax, as shown here, or use a
variable for the values.

This example writes to 4 coils starting at address 8289.
Example: write(m,'coils',8289,[0 1 0 1])
Data Types: double

serverId — Address of the server to send the write command to
double

Address of the server to send the write command to, specified as a double. Server ID
must be specified after the object name, target, address, and values. If you do not specify
a serverId, the default of 1 is used. Valid values are 0-247, with 0 being the broadcast
address. This example writes 8 coils starting at address 1 from server ID 3.
Example: write(m,'coils',1,[1 1 1 1 0 0 0 0],3);
Data Types: double

 write

23-257

precision — Data format of the register being written to on the MODBUS server
character vector | string

Data format of the register being written to on the MODBUS server, specified as a
character vector or string. Precision must be specified after the object name, target,
address, and values. Valid values are 'uint16', 'int16', 'uint32', 'int32',
'uint64', 'int64', 'single', and 'double'. This argument is optional, and the
default is 'uint16'.

Note that precision does not refer to the return type, which is always 'double'. It
specifies how to interpret the register data.

This example writes to 4 holding registers starting at address 2 using a precision of
'uint32'.
Example: write(m,'holdingregs',2,[100 200 300 500],'uint32');
Data Types: char

See Also
maskWrite | modbus | read | writeRead

Topics
“Create a MODBUS Connection” on page 11-4
“Configure Properties for MODBUS Communication” on page 11-7
“Write Data to a MODBUS Server” on page 11-18

Introduced in R2017a

23 Functions — Alphabetical List

23-258

writeAndRead
Write and read binary data from SPI instrument

Syntax
A = writeAndRead(OBJ, dataToWrite)

Description
A = writeAndRead(OBJ, dataToWrite) writes the data, dataToWrite, to the
instrument connected to interface object OBJ and reads the data available from the
instrument as a result of writing dataToWrite. OBJ must be a 1-by-1 SPI interface
object. By default, 'uint8' precision is used.

The interface object must be connected to the device using the connect function before
any data can be read from the device, otherwise an error is returned. A connected
interface object has a ConnectionStatus property value of connected.

SPI protocol operates in full duplex mode, so input and output data transfers happen
simultaneously. For every byte written to the device, a byte is read back from the device.

For more information on using the SPI interface and this function, see “Configuring SPI
Communication” on page 10-4 and “Transmitting Data Over the SPI Interface” on page
10-9.

Note To get a list of options you can use on a function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose a
property or value. For information about using this advanced tab completion feature, see
“Using Tab Completion for Functions” on page 3-10.

Examples
This example shows how to create a SPI object s, and read and write data.

 writeAndRead

23-259

Construct a spi object called s using Vendor 'aardvark', with BoardIndex of 0, and
Port of 0.

s = spi('aardvark', 0, 0);

Connect to the chip.

connect(s);

Read and write to the chip.

dataToWrite = [2 0 0 255]
data = writeAndRead(s, dataToWrite);

Disconnect the SPI device and clean up by clearing the object.

disconnect(s);
clear('s');

Introduced in R2013b

23 Functions — Alphabetical List

23-260

writeRead
Perform a write then read operation on groups of holding registers in a single MODBUS
transaction

Syntax
writeRead(m,writeAddress,values,readAddress,readCount)
writeRead(m,writeAddress,values,readAddress,readCount,serverId)
writeRead(m,writeAddress,values,writePrecision,readAddress,
readCount,readPrecision)

Description
writeRead(m,writeAddress,values,readAddress,readCount) writes data to
MODBUS object m at the starting address writeAddress using the values to write
values, and then reads data at the starting address readAddress using the number of
values to read readCount.

This function performs a combination of one write operation and one read operation on
groups of holding registers in a single MODBUS transaction. The write operation is
always performed before the read. The range of addresses to read must be contiguous,
and the range of addresses to write must be contiguous, but each is specified
independently and may or may not overlap.

writeRead(m,writeAddress,values,readAddress,readCount,serverId)
additionally uses the serverId as the address of the server to send the command to.

writeRead(m,writeAddress,values,writePrecision,readAddress,
readCount,readPrecision) adds optional precisions for the write and read
operations. The writePrecision and readPrecision arguments specify the data
format of the register being read from or written to on the MODBUS server.

Examples

 writeRead

23-261

Write and Read Holding Registers

The writeRead function is used to perform a combination of one write operation and one
read operation on groups of holding registers in a single MODBUS transaction. The write
operation is always performed before the read. The range of addresses to read must be
contiguous, and the range of addresses to write must be contiguous, but each is specified
independently and may or may not overlap.

Write 2 holding registers starting at address 300, and read 4 holding registers starting at
address 17250.

writeRead(m,300,[500 1000],17250,4)

ans =

 35647 48923 50873 60892

If the operation is successful, it returns an array of doubles, each representing a 16-bit
register value, where the first value in the vector corresponds to the register value at the
address specified in readAddress.

You can optionally create variables for the values to be written, instead of including the
array of values in the function syntax. The example could be written this way, using a
variable for the values:

values = [500 1000];
writeRead(m,300,values,17250,4)

ans =

 35647 58923 50873 60892

Write and Read Holding Registers, and Specify Server ID

Use the serverId argument to specify the address of the server to send the command to.

Write 3 holding registers starting at address 400, and read 4 holding registers starting at
address 52008 from server ID 6.

writeRead(m,400,[1024 512 680],52008,4,6)

23 Functions — Alphabetical List

23-262

ans =

 38629 24735 29456 39470

Write and Read Holding Registers, and Specify Precisions

Use the writePrecision and readPrecision arguments to specify the data format of
the register being read from or written to on the MODBUS server.

Write 3 holding registers starting at address 500, and read 6 holding registers starting at
address 52008 from server ID 6. Specify a writePrecision of 'uint64' and a
readPrecision of 'uint32'.

writeRead(m,500,[1024 512 680],'uint64',52008,6,'uint32',6)

ans =

 38629 24735 29456 39470 33434 29484

• “Create a MODBUS Connection” on page 11-4
• “Configure Properties for MODBUS Communication” on page 11-7
• “Write and Read Multiple Holding Registers” on page 11-21

Input Arguments
writeAddress — Starting address of the registers to write
double

Starting address to write to, specified as a double. writeAddress must be the first
argument after the object name. This example writes 2 holding registers starting at
address 501 and reads 4 holding registers starting at address 11250. The writeAddress
is 501.
Example: writeRead(m,501,[1024 512],11250,4)
Data Types: double

values — Array of values to write
double | array of doubles

 writeRead

23-263

Array of values to write, specified as a double or array of doubles. Values must be the
second argument after the object name. Each value must be in the range 0–65535. This
example writes 2 holding registers starting at address 501 and reads 4 holding registers
starting at address 11250. The values are [1024 512].
Example: writeRead(m,501,[1024 512],11250,4)
Data Types: double

readAddress — Starting address of the holding registers to read
double

Starting address of the holding registers to read, specified as a double. readAddress
must be the third argument after the object name. This example writes 2 holding
registers starting at address 501 and reads 4 holding registers starting at address 11250.
The readAddress is 11250.
Example: writeRead(m,501,[1024 512],11250,4)
Data Types: double

readCount — Number of holding registers to read
double

Number of holding registers to read, specified as a double. readCount must be the
fourth argument after the object name. This example writes 2 holding registers starting
at address 501 and reads 4 holding registers starting at address 11250. The readCount
is 4.
Example: writeRead(m,501,[1024 512],11250,4)
Data Types: double

serverId — Address of the server to send the command to
double

Address of the server to send the command to, specified as a double. Server ID must be
specified after the object name, write address, values, read address, and read count. If
you do not specify a serverId, the default of 1 is used. Valid values are 0–247, with 0
being the broadcast address. This example writes 3 holding registers starting at address
400 and reads 4 holding registers starting at address 52008 from server ID 6.
Example: writeRead(m,400,[1024 512 680],52008,4,6)

23 Functions — Alphabetical List

23-264

Data Types: double

writePrecision — Data format of the holding register being written to on the MODBUS
server
character vector | string

Data format of the holding register being written to on the MODBUS server, specified as
a character vector or string. writePrecision must be specified after the write address
and values. Valid values are 'uint16', 'int16', 'uint32', 'int32', 'uint64',
'int64', 'single', and 'double'. This argument is optional, and the default is
'uint16'.

Note that writePrecision does not refer to the return type, which is always
'double'. It specifies how to interpret the register data.

This example writes 3 holding registers starting at address 400 and reads 4 holding
registers starting at address 52008 from server ID 6. It also specifies a writePrecision
of 'uint64'.
Example: writeRead(m,400,[1024 512 680],'uint64',52008,4,'uint32',6)
Data Types: char

readPrecision — Data format of the holding register being read from on the MODBUS
server
character vector | string

Data format of the holding register being read from on the MODBUS server, specified as
a character vector or string. readPrecision must be specified after the read address,
and read count. Valid values are 'uint16', 'int16', 'uint32', 'int32', 'uint64',
'int64', 'single', and 'double'. This argument is optional, and the default is
'uint16'.

Note that readPrecision does not refer to the return type, which is always 'double'.
It specifies how to interpret the register data.

This example writes 3 holding registers starting at address 400 and reads 4 holding
registers starting at address 52008 from server ID 6. It also specifies a readPrecision
of 'uint32'.
Example: writeRead(m,400,[1024 512 680],'uint64',52008,4,'uint32',6)
Data Types: char

 writeRead

23-265

See Also
maskWrite | modbus | read | write

Topics
“Create a MODBUS Connection” on page 11-4
“Configure Properties for MODBUS Communication” on page 11-7
“Write and Read Multiple Holding Registers” on page 11-21

Introduced in R2017a

23 Functions — Alphabetical List

23-266

Properties — Alphabetical List

24

ActualLocation
Configuration store file used by IVI configuration store object

Description
ActualLocation reflects the location of the IVI configuration store actually being used.
It is either the master configuration store, or the ProcessLocation if an alternative to
the master store was specified when the IVI configuration store object was created.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Character vector

Values
The default value is the master configuration store.

See Also

Functions

commit

Properties

MasterLocation, ProcessLocation

24 Properties — Alphabetical List

24-2

Alias
Alias of resource name for VISA instrument

Description
Alias indicates the alias for the resource name for a VISA instrument. When you create
a VISA object, you can specify either the resource name for a VISA instrument or an
alias for the resource name. If an alias is specified, Alias is automatically assigned the
value specified in the VISA function. If a resource name is specified and the resource
name has an alias, Alias is updated with the alias value. If the resource name does not
have an alias, Alias is an empty character vector.

Characteristics
Usage VISA object
Read only Always
Data type Character vector

Values
The default value is an empty character vector.

Remarks
You set the alias for a resource name using vender-supplied tools. You do not set an alias
in the MATLAB workspace. When you create the VISA object in the MATLAB
workspace, the Alias property of the object takes on the value of the resource name
alias. You do not directly set the value of this property.

National Instruments' Measurement & Automation Explorer (MAX) is one example of a
graphical interface tool for setting a VISA alias in NI-VISA. In this tool, select Tools >
NI-VISA > Alias Editor to edit, add, or clear aliases. When you have your aliases
defined, you can use them in the MATLAB workspace to access your resources.

 Alias

24-3

See Also

Functions
visa

Properties

RsrcName

24 Properties — Alphabetical List

24-4

BaudRate
Specify bit transmit rate

Description
You configure BaudRate as bits per second. The transferred bits include the start bit, the
data bits, the parity bit (if used), and the stop bits. However, only the data bits are
stored.

The baud rate is the rate at which information is transferred in a communication
channel. In the serial port context, "9600 baud" means that the serial port is capable of
transferring a maximum of 9600 bits per second. If the information unit is one baud (one
bit), then the bit rate and the baud rate are identical. If one baud is given as 10 bits, (for
example, eight data bits plus two framing bits), the bit rate is still 9600 but the baud rate
is 9600/10, or 960. You always configure BaudRate as bits per second. Therefore, in the
above example, set BaudRate to 9600.

Note Both the computer and the instrument must be configured to the same baud rate
before you can successfully read or write data.

Your system computes the acceptable rates by taking the baud base, which is determined
by your serial port, and dividing it by a positive whole number divisor . The system will
try to find the best match by modifying the divisor. For example, if:

baud base = 115200 bits per second
divisors = 1,2,3,4,5….
Possible BaudRates = 115200, 57600, 38400, 28800, 23040….

Your system may further limit the available baud rates to conform to specific conventions
or standards. In the above example, for instance, 23040 bits/sec may not be available on
all systems.

 BaudRate

24-5

Characteristics
Usage Serial port, VISA-serial
Read only Never
Data type Double

Values
The default value is 9600 bits per second.

Examples
This example shows how to set the baud rate for a serial port object.

Create a serial port object associated with the COM1 port. The oscilloscope you are
connecting to over the serial port is configured to a baud rate of 115200 and a carriage
return terminator, so set the serial port object to those values.

s = serial('COM1');
s.Baudrate = 115200;
s.Terminator = 'CR';

See Also

Properties

DataBits, Parity, StopBits

24 Properties — Alphabetical List

24-6

BoardIndex
Specify index number of interface board

Description
You configure BoardIndex to be the index number of the GPIB board, USB board, or
TCP/IP board associated with your instrument. When you create a GPIB, VISA-GPIB,
VISA-GPIB-VXI, VISA-TCPIP, or VISA-USB object, BoardIndex is automatically
assigned the value specified in the gpib or visa function.

For GPIB objects, the Name property is automatically updated to reflect the BoardIndex
value. For VISA-GPIB, VISA-GPIB-VXI, VISA-TCPIP, or VISA-USB objects, the Name
and RsrcName properties are automatically updated to reflect the BoardIndex value.

You can configure BoardIndex only when the object is disconnected from the
instrument. You disconnect a connected object with the fclose function. A disconnected
object has a Status property value of closed.

Characteristics
Usage GPIB, VISA-GPIB, VISA-GPIB-VXI, VISA-TCPIP, VISA-USB
Read only While open (GPIB, VISA-GPIB), always (VISA-GPIB-VXI, VISA-

TCPIP, VISA-USB)
Data type Double

Values
The value is defined after the instrument object is created.

 BoardIndex

24-7

Examples
Suppose you create a VISA-GPIB object associated with board 4, primary address 1, and
secondary address 8.

vg = visa('agilent','GPIB4::1::8::INSTR');

The BoardIndex, Name, and RsrcName properties reflect the GPIB board index number.

vg.BoardIndex
ans =
 [4]

vg.Name
ans =
 'VISA-GPIB4-1-8'

vg,.RsrcName
ans =
 'GPIB4::1::8::INSTR'

See Also

Functions

fclose, gpib, visa

Properties

Name, RsrcName, Status

24 Properties — Alphabetical List

24-8

BreakInterruptFcn
Specify callback function to execute when break-interrupt event occurs

Description
You configure BreakInterruptFcn to execute a callback function when a break-
interrupt event occurs. A break-interrupt event is generated by the serial port when the
received data is in an off (space) state longer than the transmission time for one byte.

Note A break-interrupt event can be generated at any time during the instrument
control session.

If the RecordStatus property value is on, and a break-interrupt event occurs, the
record file records this information:

• The event type as BreakInterrupt
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and Executing Callback
Functions” on page 4-32.

Characteristics
Usage Serial port
Read only Never
Data type Callback function

Values
The default value is an empty character vector.

 BreakInterruptFcn

24-9

See Also

Functions
record

Properties

RecordStatus

24 Properties — Alphabetical List

24-10

BusManagementStatus
State of GPIB bus management lines

Description
BusManagementStatus is a structure array that contains the fields Attention,
InterfaceClear, RemoteEnable, ServiceRequest, and EndOrIdentify. These
fields indicate the state of the Attention (ATN), Interface Clear (IFC), Remote Enable
(REN), Service Request (SRQ) and End Or Identify (EOI) GPIB lines.

BusManagementStatus can be on or off for any of these fields. If
BusManagementStatus is on, the associated line is asserted. If BusManagementStatus
is off, the associated line is unasserted.

Characteristics
Usage GPIB
Read only Always
Data type Structure

Values
off The GPIB line is unasserted
on The GPIB line is asserted

The default value is instrument dependent.

Examples
Create the GPIB object g associated with a National Instruments board, and connect g to
a Tektronix TDS 210 oscilloscope.

 BusManagementStatus

24-11

g = gpib('ni',0,0);
fopen(g)

Write the *STB? command, which queries the instrument's status byte register, and then
return the state of the bus management lines with the BusManagementStatus property.

fprintf(g,'*STB?')
g.BusManagementStatus
ans =
 Attention: 'off'
 InterfaceClear: 'off'
 RemoteEnable: 'on'
 ServiceRequest: 'off'
 EndOrIdentify: 'on'

REN is asserted because the system controller placed the scope in the remote enable
mode, while EOI is asserted to mark the end of the command.

Now read the result of the *STB? command, and return the state of the bus management
lines.

out = fscanf(g)
out =
0
g.busmanagementstatus
ans =
 Attention: 'off'
 InterfaceClear: 'off'
 RemoteEnable: 'on'
 ServiceRequest: 'off'
 EndOrIdentify: 'off'

fclose(g)
delete(g)
clear g

24 Properties — Alphabetical List

24-12

ByteOrder
Specify byte order of instrument

Description
You configure ByteOrder to be littleEndian or bigEndian. If ByteOrder is
littleEndian, then the instrument stores the first byte in the first memory address. If
ByteOrder is bigEndian, then the instrument stores the last byte in the first memory
address.

For example, suppose the hexadecimal value 4F52 is to be stored in instrument memory.
Because this value consists of two bytes, 4F and 52, two memory locations are used.
Using big-endian format, 4F is stored first in the lower storage address. Using little-
endian format, 52 is stored first in the lower storage address.

Note You should configure ByteOrder to the appropriate value for your instrument
before performing a read or write operation. Refer to your instrument documentation for
information about the order in which it stores bytes.

You can set this property on interface objects such as TCP/IP or GPIB. In this example, a
TCP/IP object, Tobj, is set to bigEndian by default, and you change it to
littleEndian.

Tobj.ByteOrder = 'littleEndian'

Characteristics
Usage Any instrument object
Read only Never
Data type Character vector

 ByteOrder

24-13

Values
littleEndian The byte order of the instrument is little-endian.

Default for serial, gpib, and visa objects.
bigEndian The byte order of the instrument is big-endian.

Default for tcpip and udp objects.

Examples
This example shows how to set the byte order for a TCP/IP object.

Create a TCP/IP object associated with the host 127.0.0.1 and port 4000. Change the byte
order from the default of bigEndian to littleEndian.

t = tcpip('127.0.0.1', 4000);
t.ByteOrder = 'littleEndian';

See Also

Properties

Status

24 Properties — Alphabetical List

24-14

BytesAvailable
Number of bytes available in input buffer

Description
BytesAvailable indicates the number of bytes currently available to be read from the
input buffer. The property value is continuously updated as the input buffer is filled, and
is set to 0 after the fopen function is issued.

You can make use of BytesAvailable only when reading data asynchronously. This is
because when reading data synchronously, control is returned to the MATLAB Command
Window only after the input buffer is empty. Therefore, the BytesAvailable value is
always 0. To learn how to read data asynchronously, refer to “Synchronous Versus
Asynchronous Read Operations” on page 3-23.

The BytesAvailable value can range from zero to the size of the input buffer. Use the
InputBufferSize property to specify the size of the input buffer. Use the
ValuesReceived property to return the total number of values read.

Characteristics
Usage Any instrument object
Read only Always
Data type Double

Values
The value can range from zero to the size of the input buffer. The default value is 0.

 BytesAvailable

24-15

See Also

Functions
fopen

Properties

InputBufferSize, TransferStatus, ValuesReceived

24 Properties — Alphabetical List

24-16

BytesAvailableFcn
Specify callback function to execute when specified number of bytes are available in
input buffer, or terminator is read

Description
You configure BytesAvailableFcn to execute a callback function when a bytes-
available event occurs. A bytes-available event occurs when the number of bytes specified
by the BytesAvailableFcnCount property is available in the input buffer, or after a
terminator is read, as determined by the BytesAvailableFcnMode property.

Note A bytes-available event can be generated only for asynchronous read operations.

If the RecordStatus property value is on, and a bytes-available event occurs, the record
file records this information:

• The event type as BytesAvailable
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

Note You cannot use ASCII values larger than 127 characters. The function is limited to
127 binary characters.

To learn how to create a callback function, refer to “Creating and Executing Callback
Functions” on page 4-32.

Characteristics
Usage Any instrument object
Read only Never
Data type Callback function

 BytesAvailableFcn

24-17

Values
The default value is an empty character vector.

Examples
Create the serial port object s on a Windows machine for a Tektronix TDS 210 two-
channel oscilloscope connected to the serial port COM1.

s = serial('COM1');

Configure s to execute the callback function instrcallback when 40 bytes are
available in the input buffer.

s.BytesAvailableFcnCount = 40;
s.BytesAvailableFcnMode = 'byte';
s.BytesAvailableFcn = @instrcallback;

Connect s to the oscilloscope.

fopen(s)

Write the *IDN? command, which instructs the scope to return identification
information. Because the default value for the ReadAsyncMode property is continuous,
data is read as soon as it is available from the instrument.

fprintf(s,'*IDN?')

The resulting output from instrcallback is shown below.

BytesAvailable event occurred at 18:33:35 for the object:
Serial-COM1.

56 bytes are read and instrcallback is called once. The resulting display is shown
above.

s.BytesAvailable
ans =
 56

Suppose you remove 25 bytes from the input buffer and issue the MEASUREMENT?
command, which instructs the scope to return its measurement settings.

24 Properties — Alphabetical List

24-18

out = fscanf(s,'%c',25);
fprintf(s,'MEASUREMENT?')

The resulting output from instrcallback is shown below.

BytesAvailable event occurred at 18:33:48 for the object:
Serial-COM1.

BytesAvailable event occurred at 18:33:48 for the object:
Serial-COM1.

There are now 102 bytes in the input buffer, 31 of which are left over from the *IDN?
command. instrcallback is called twice; once when 40 bytes are available and once
when 80 bytes are available.

s.BytesAvailable
ans =
 102

See Also

Functions
record

Properties

BytesAvailableFcnCount, BytesAvailableFcnMode, EOSCharCode, RecordStatus,
Terminator, TransferStatus

 BytesAvailableFcn

24-19

BytesAvailableFcnCount
Specify number of bytes that must be available in input buffer to generate bytes-
available event

Description
You configure BytesAvailableFcnCount to the number of bytes that must be available
in the input buffer before a bytes-available event is generated.

Use the BytesAvailableFcnMode property to specify whether the bytes-available event
occurs after a certain number of bytes are available or after a terminator is read.

The bytes-available event executes the callback function specified for the
BytesAvailableFcn property.

You can configure BytesAvailableFcnCount only when the object is disconnected from
the instrument. You disconnect an object with the fclose function. A disconnected
object has a Status property value of closed.

Characteristics
Usage Any instrument object
Read only While open
Data type Double

Values
The default value is 48.

24 Properties — Alphabetical List

24-20

See Also

Functions
fclose

Properties

BytesAvailableFcn, BytesAvailableFcnMode, EOSCharCode, Status, Terminator

 BytesAvailableFcnCount

24-21

BytesAvailableFcnMode
Specify whether bytes-available event is generated after specified number of bytes are
available in input buffer, or after terminator is read

Description
For serial port, TCPIP, UDP, or VISA-serial objects, you can configure
BytesAvailableFcnMode to be terminator or byte. For all other instrument objects,
you can configure BytesAvailableFcnMode to be eosCharCode or byte.

If BytesAvailableFcnMode is terminator, a bytes-available event occurs when the
terminator specified by the Terminator property is read. If BytesAvailableFcnMode
is eosCharCode, a bytes-available event occurs when the End-Of-String character
specified by the EOSCharCode property is read. If BytesAvailableFcnMode is byte, a
bytes-available event occurs when the number of bytes specified by the
BytesAvailableFcnCount property is available.

The bytes-available event executes the callback function specified for the
BytesAvailableFcn property.

You can configure BytesAvailableFcnMode only when the object is disconnected from
the instrument. You disconnect an object with the fclose function. A disconnected
object has a Status property value of closed.

Characteristics
Usage Any instrument object
Read only While open
Data type Character vector

24 Properties — Alphabetical List

24-22

Values

Serial, TCPIP, UDP, and VISA-Serial
{terminator} A bytes-available event is generated when the terminator is reached.
byte A bytes-available event is generated when the specified number of

bytes available.

GPIB, VISA-GPIB, VISA-VXI, and VISA-GPIB-VXI
{eosCharCode} A bytes-available event is generated when the EOS (End-Of-String)

character is reached.
byte A bytes-available event is generated when the specified number of

bytes is available.

See Also

Functions
fclose

Properties

BytesAvailableFcn, BytesAvailableFcnCount, EOSCharCode, Status, Terminator

 BytesAvailableFcnMode

24-23

BytesToOutput
Number of bytes currently in output buffer

Description
BytesToOutput indicates the number of bytes currently in the output buffer waiting to
be written to the instrument. The property value is continuously updated as the output
buffer is filled and emptied, and is set to 0 after the fopen function is issued.

You can make use of BytesToOutput only when writing data asynchronously. This is
because when writing data synchronously, control is returned to the MATLAB Command
Window only after the output buffer is empty. Therefore, the BytesToOutput value is
always 0. To learn how to write data asynchronously, Refer to “Synchronous Versus
Asynchronous Write Operations” on page 3-18.

Use the ValuesSent property to return the total number of values written to the
instrument.

Note If you attempt to write out more data than can fit in the output buffer, then an
error is returned and BytesToOutput is 0. You specify the size of the output buffer with
the OutputBufferSize property.

Characteristics
Usage Any instrument object
Read only Always
Data type Double

Values
The default value is 0.

24 Properties — Alphabetical List

24-24

See Also

Functions
fopen

Properties

OutputBufferSize, TransferStatus, ValuesSent

 BytesToOutput

24-25

ChassisIndex
Specify index number of VXI chassis

Description
You configure ChassisIndex to be the index number of the VXI chassis associated with
your instrument.

When you create a VISA-VXI or VISA-GPIB-VXI object, ChassisIndex is automatically
assigned the value specified in the visa function. For both object types, the Name and
RsrcName properties are automatically updated to reflect the ChassisIndex value.

You can configure ChassisIndex only when the object is disconnected from the
instrument. You disconnect a connected object with the fclose function. A disconnected
object has a Status property value of closed.

Characteristics
Usage VISA-VXI, VISA-GPIB-VXI
Read only While open
Data type double

Values
The value is defined after the instrument object is created.

Examples
Suppose you create a VISA-GPIB-VXI object associated with chassis 0 and logical
address 32.

v = visa('agilent','GPIB-VXI0::32::INSTR');

24 Properties — Alphabetical List

24-26

The ChassisIndex, Name, and RsrcName properties reflect the VXI chassis index
number.

v.ChassisIndex
ans =
 [0]

v.Name
ans =
 'VISA-GPIB-VXI0-32'

v.RsrcName
ans =
 'GPIB-VXI0::32::INSTR'

See Also

Functions

fclose, visa

Properties

Name, RsrcName, Status

 ChassisIndex

24-27

CompareBits
Specify number of bits that must match EOS character to complete read operation, or to
assert EOI line

Description
You can configure CompareBits to be 7 or 8. If CompareBits is 7, the read operation
completes when a byte that matches the low seven bits of the End-Of-String (EOS)
character is received. The End Or Identify (EOI) line is asserted when a byte that
matches the low seven bits of the EOS character is written. If CompareBits is 8, the
read operation completes when a byte that matches all eight bits of the EOS character is
received. The EOI line is asserted when a byte that matches all eight bits of the EOS
character is written.

You can specify the EOS character with the EOSCharCode property. You can specify
when the EOS character is used (read operation, write operation, or both) with the
EOSMode property.

Characteristics
Usage GPIB
Read only Never
Data type Double

Values
{8} Compare all eight EOS bits.
7 Compare the lower seven EOS bits.

24 Properties — Alphabetical List

24-28

See Also

Properties

EOSCharCode, EOSMode

 CompareBits

24-29

ConfirmationFcn
Specify callback function to execute when confirmation event occurs

Description
You configure ConfirmationFcn to execute a callback function when a confirmation
event occurs.

A confirmation event is generated when the command written to the instrument results
in the instrument being configured to a different value than it was sent.

Note A confirmation event can be generated only when the object is connected to the
instrument with connect.

Characteristics
Usage Device
Read only Never
Data type Callback

Values
The default value is an empty character vector.

See Also

Functions

connect

24 Properties — Alphabetical List

24-30

DataBits
Specify number of data bits to transmit

Description
You can configure DataBits to be 5, 6, 7, or 8. Data is transmitted as a series of five,
six, seven, or eight bits with the least significant bit sent first. At least seven data bits
are required to transmit ASCII characters. Eight bits are required to transmit binary
data. Five and six bit data formats are used for specialized communication equipment.

Note Both the computer and the instrument must be configured to transmit the same
number of data bits.

In addition to the data bits, the serial data format consists of a start bit, one or two stop
bits, and possibly a parity bit. You specify the number of stop bits with the StopBits
property, and the type of parity checking with the Parity property.

Characteristics
Usage Serial port, VISA-serial
Read only Never
Data type Double

Values
DataBits can be 5, 6, 7, or 8. The default value is 8.

 DataBits

24-31

See Also

Properties

Parity, StopBits

24 Properties — Alphabetical List

24-32

DatagramAddress
IP dotted decimal address of received datagram sender

Description
DatagramAddress is the datagram sender IP address of the next datagram to be read
from the input buffer. An example of an IP dotted decimal address character vector is
144.212.100.10.

When you read a datagram from the input buffer, DatagramAddress is updated.

Characteristics
Usage UDP
Read only Always
Data type Character vector

Values
The default value is ''.

See Also

Functions

udp

Properties

DatagramPort, RemotePort

 DatagramAddress

24-33

DatagramPort
Port number of datagram sender

Description
DatagramPort is the port number of the next datagram to be read from the input buffer.
When you read a datagram from the input buffer, DatagramPort is updated.

Characteristics
Usage UDP
Read only Never
Data type Double

Values
The default value is [].

See Also

Functions

udp

Properties

DatagramAddress

24 Properties — Alphabetical List

24-34

DatagramReceivedFcn
Specify callback function to execute when datagram is received

Description
You configure DatagramReceivedFcn to execute a callback function when a datagram
has been received. The callback executes when a complete datagram is received in the
input buffer.

Note A datagram-received event can be generated at any time during the instrument
control session.

If the RecordStatus property value is on, and a datagram-received event occurs, the
record file records this information:

• The event type as DatagramReceived
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and Executing Callback
Functions” on page 4-32

Characteristics
Usage UDP
Read only Never
Data type Callback

Values
The default value is ''.

 DatagramReceivedFcn

24-35

See Also

Functions

readasync, udp

Properties

DatagramAddress, DatagramPort, ReadAsyncMode

24 Properties — Alphabetical List

24-36

DatagramTerminateMode
Configure terminate read mode when reading datagrams

Description
DatagramTerminateMode defines how fread and fscanf read operations terminate.
You can configure DatagramTerminateMode to be on or off.

If DatagramTerminateMode is on, the read operation terminates when a datagram is
read. When DatagramTerminateMode is off, fread and fscanf read across datagram
boundaries.

Characteristics
Usage UDP
Read only Never
Data type Character vector

Values
{on} The read operation terminates when a datagram is read.
off The read operation spans datagram boundaries.

See Also

Functions

fread, fscanf, udp

 DatagramTerminateMode

24-37

DataTerminalReady
Specify state of DTR pin

Description
You can configure DataTerminalReady to be on or off. If DataTerminalReady is on,
the Data Terminal Ready (DTR) pin is asserted. If DataTerminalReady is off, the DTR
pin is unasserted.

In normal usage, the DTR and Data Set Ready (DSR) pins work together, and are used to
signal if instruments are connected and powered. However, there is nothing in the
RS-232 or the RS-485 standard that states the DTR pin must be used in any specific way.
For example, DTR and DSR might be used for handshaking. You should refer to your
instrument documentation to determine its specific pin behavior.

You can return the value of the DSR pin with the PinStatus property. Handshaking is
described in “The Control Pins” on page 6-6.

Characteristics
Usage Serial port, VISA-serial
Read only Never
Data type Character vector

Values
{on} The DTR pin is asserted.
off The DTR pin is unasserted.

24 Properties — Alphabetical List

24-38

See Also

Properties

FlowControl, PinStatus

 DataTerminalReady

24-39

DriverName
Specify name of driver used to communicate with instrument

Description
For device objects with a DriverType property value of MATLAB Instrument Driver,
the DriverName property specifies the name of the MATLAB instrument driver that
contains the supported instrument commands.

For device objects with a DriverType property value of VXIplug&play or IVI-C, the
DriverName is the name of the VXIplug&play or IVI-C driver, respectively.

Characteristics
Usage Device
Read only Always
Data type Character vector

Values
DriverName is defined at device object creation.

See Also

Properties

DriverType

24 Properties — Alphabetical List

24-40

DriverSessions
Array of driver sessions contained in IVI configuration store

Description
DriverSessions identifies all the driver sessions in the IVI configuration store. Each
driver session maps a software module to a hardware asset and its
IOResourceDescriptor. A driver session also determines default settings and behavior
for its software module.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Array of Structs

See Also

Properties

HardwareAssets, SoftwareModules

 DriverSessions

24-41

DriverType
Specify type of driver used to communicate with instrument

Description
DriverType can be MATLAB interface object, MATLAB VXIplug&play, or MATLAB
IVI. If DriverType is MATLAB interface object, an interface object is used to
communicate with the instrument. If DriverType is MATLAB VXIplug&play, a
VXIplug&play driver is used to communicate with the instrument. If DriverType is
MATLAB IVI, an IVI driver is used to communicate with the instrument.

Characteristics
Usage Device
Read only Always
Data type Character vector

Values
The DriverType value is defined at the device object creation. DriverType can be
MATLAB interface object, MATLAB VXIplug&play, or MATLAB IVI.

See Also

Properties

DriverName

24 Properties — Alphabetical List

24-42

EOIMode
Specify if EOI line is asserted at end of write operation

Description
You can configure EOIMode to be on or off. If EOIMode is on, the End Or Identify (EOI)
line is asserted at the end of a write operation. If EOIMode is off, the EOI line is not
asserted at the end of a write operation. EOIMode applies to both binary and text write
operations.

Characteristics
Usage GPIB, VISA-GPIB, VISA-VXI, VISA-GPIB-VXI
Read only Never
Data type Character vector

Values
{on} The EOI line is asserted at the end of a write operation.
off The EOI line is not asserted at the end of a write operation.

See Also

Properties

BusManagementStatus

 EOIMode

24-43

EOSCharCode
Specify EOS character

Description
You can configure EOSCharCode to an integer value ranging from 0 to 255, or to the
equivalent ASCII character. For example, to configure EOSCharCode to a carriage
return, you specify the value to be CR or 13.

EOSCharCode replaces \n wherever it appears in the ASCII command sent to the
instrument. Note that %s\n is the default format for the fprintf function.

For many practical applications, you will configure both EOSCharCode and the EOSMode
property. EOSMode specifies when the EOS character is used. If EOSMode is write or
read&write (writing is enabled), the EOI line is asserted every time the EOSCharCode
value is written to the instrument. If EOSMode is read or read&write (reading is
enabled), then the read operation might terminate when the EOSCharCode value is
detected. For GPIB objects, the CompareBits property specifies the number of bits that
must match the EOS character to complete a read or write operation.

To see how EOSCharCode and EOSMode work together, refer to the example on page 24-
47 given in the EOSMode property description.

Characteristics
Usage GPIB, VISA-GPIB, VISA-VXI, VISA-GPIB-VXI
Read only Never
Data type ASCII value

Values
An integer value ranging from 0 to 255 or the equivalent ASCII character. The default
value is LF, which corresponds to a line feed.

24 Properties — Alphabetical List

24-44

See Also

Functions
fprintf

Properties

CompareBits, EOSMode

 EOSCharCode

24-45

EOSMode
Specify when EOS character is written or read

Description
For GPIB, VISA-GPIB, VISA-VXI, and VISA-GPIB-VXI objects, you can configure
EOSMode to be none, read, write, or read&write.

If EOSMode is none, the End-Of-String (EOS) character is ignored. If EOSMode is read,
the EOS character is used to terminate a read operation. If EOSMode is write, the EOS
character is appended to the ASCII command being written whenever \n is encountered.
When the EOS character is written to the instrument, the End Or Identify (EOI) line is
asserted. If EOSMode is read&write, the EOS character is used in both read and write
operations.

The EOS character is specified by the EOSCharCode property. For GPIB objects, the
CompareBits property specifies the number of bits that must match the EOS character
to complete a read operation, or to assert the EOI line.

Rules for Completing a Read Operation

For any EOSMode value, the read operation completes when

• The EOI line is asserted.
• Specified number of values is read.
• A timeout occurs.

Additionally, if EOSMode is read or read&write (reading is enabled), then the read
operation can complete when the EOSCharCode property value is detected.

Rules for Completing a Write Operation

Regardless of the EOSMode value, a write operation completes when

• The specified number of values is written.

24 Properties — Alphabetical List

24-46

• A timeout occurs.

Additionally, if EOSMode is write or read&write, the EOI line is asserted each time the
EOSCharCode property value is written to the instrument.

Characteristics
Usage GPIB, VISA-GPIB, VISA-VXI, VISA-GPIB-VXI
Read only Never
Data type Character vector

Values
{none} The EOS character is ignored.
read The EOS character is used for each read operation.
write The EOS character is used for each write operation.
read&write The EOS character is used for each read and write operation.

Examples
Suppose you input a nominal voltage signal of 2.0 volts into a function generator, and
read back the voltage value using fscanf.

g = gpib('ni',0,1);
fopen(g)
fprintf(g,'Volt?')
out = fscanf(g)
out =
+2.00000E+00

The EOSMode and EOSCharCode properties are configured to terminate the read
operation when an E character is encountered.

g.EOSMode = 'read'
g.EOSCharCode = 'E'
fprintf(g,'Volt?')
out = fscanf(g)

 EOSMode

24-47

out =
+2.00000

See Also

Properties

CompareBits, EOIMode, EOSCharCode

24 Properties — Alphabetical List

24-48

ErrorFcn
Specify callback function to execute when error event occurs

Description
You configure ErrorFcn to execute a callback function when an error event occurs.

Note An error event is generated only for asynchronous read and write operations.

An error event is generated when a timeout occurs. A timeout occurs if a read or write
operation does not successfully complete within the time specified by the Timeout
property. An error event is not generated for configuration errors such as setting an
invalid property value.

If the RecordStatus property value is on, and an error event occurs, the record file
records this information:

• The event type as Error
• The error message
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and Executing Callback
Functions” on page 4-32.

Characteristics
Usage Any instrument object
Read only Never
Data type Callback function

 ErrorFcn

24-49

Values
The default value is an empty character vector.

See Also

Functions
record

Properties

RecordStatus, Timeout

24 Properties — Alphabetical List

24-50

FlowControl
Specify data flow control method to use

Description
You can configure FlowControl to be none, hardware, or software. If FlowControl
is none, then data flow control (handshaking) is not used. If FlowControl is hardware,
then hardware handshaking is used to control data flow. If FlowControl is software,
then software handshaking is used to control data flow.

Hardware handshaking typically utilizes the Request to Send (RTS) and Clear to Send
(CTS) pins to control data flow. Software handshaking uses control characters (Xon and
Xoff) to control data flow. To learn more about hardware and software handshaking,
refer to “Using Control Pins” on page 6-41.

You can return the value of the CTS pin with the PinStatus property. You can specify
the value of the RTS pin with the RequestToSend property. However, if FlowControl
is hardware, and you specify a value for RequestToSend, then that value might not be
honored.

If you set the FlowControl property to hardware on a serial object, and a hardware
connection is not detected, the fwrite and the fprintf functions will return an error
message. This occurs if a device is not connected, or a connected device is not asserting
that is ready to receive data. Check you remote device's status and flow control settings
to see if hardware flow control is causing errors in MATLAB.

Notes If you want to check to see if the device is asserting that it is ready to receive data,
set the FlowControl to none. Once you connect to the device check the PinStatus
structure for ClearToSend. If ClearToSend is off, there is a problem on the remote
device side. If ClearToSend is on, there is a hardware FlowControl device prepared to
receive data and you can execute fprintf and fwrite.

Although you might be able to configure your instrument for both hardware handshaking
and software handshaking at the same time, the toolbox does not support this behavior.

 FlowControl

24-51

Characteristics
Usage Serial port, VISA-serial
Read only Never
Data type Character vector

Values
{none} No flow control is used.
hardware Hardware flow control is used.
software Software flow control is used.

See Also

Properties

PinStatus, RequestToSend

24 Properties — Alphabetical List

24-52

HandshakeStatus
State of GPIB handshake lines

Description
HandshakeStatus is a structure array that contains the fields DataValid,
NotDataAccepted, and NotReadyForData. These fields indicate the state of the Data
Valid (DAV), Not Data Accepted (NDAC) and Not Ready For Data (NRFD) GPIB lines,
respectively.

HandshakeStatus can be on or off for any of these fields. A value of on indicates the
associated line is asserted. A value of off indicates the associated line is unasserted.

Characteristics
Usage GPIB
Read only Never
Data type Structure

Values
on The associated handshake line is asserted
off The associated handshake line is unasserted

The default value is instrument dependent.

 HandshakeStatus

24-53

HardwareAssets
Array of hardware assets contained in IVI configuration store

Description
HardwareAssets specifies all hardware assets in the IVI configuration store, each
hardware asset referencing an IOResourceDescriptor.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Array of Structs

Values
The default value is empty.

See Also

Properties

DriverSessions, SoftwareModules

24 Properties — Alphabetical List

24-54

HwIndex
Hardware index of device group object

Description
Every device group object contained by a device object has an associated hardware index
that is used to reference that device group object. For example, to configure property
values for an individual device group object, you must reference the group object through
its property name and the appropriate HwIndex value.

HwIndex provides a convenient way to programmatically access device group objects.

Characteristics
Usage Device Group
Read only Always
Data type Double

Values
The default value is defined at the device group object creation.

See Also

Properties

HwName

 HwIndex

24-55

HwName
Hardware name of device group object

Description
Every device group object contained by a device object has an associated hardware name
that can be used to reference that device group object.

HwName provides a convenient way to programmatically access device group objects.

Characteristics
Usage Device Group
Read only Always
Data type Character vector

Values
The default value is defined at the device group object creation.

See Also

Properties

HwIndex

24 Properties — Alphabetical List

24-56

InputBufferSize
Specify size of input buffer in bytes

Description
You configure InputBufferSize as the total number of bytes that can be stored in the
software input buffer during a read operation.

A read operation is terminated if the amount of data stored in the input buffer equals the
InputBufferSize value. You can read text data with the fgetl, fgets, or fscanf
functions. You can read binary data with the fread function.

You can configure InputBufferSize only when the instrument object is disconnected
from the instrument. You disconnect an object with the fclose function. A disconnected
object has a Status property value of closed.

If you configure InputBufferSize while there is data in the input buffer, then that
data is flushed.

Characteristics
Usage Any instrument object
Read only While open
Data type Double

Values
The default value is 512 bytes.

Examples
This example shows how to set the input buffer size for a serial port object. The
InputBufferSize property specifies the total number of bytes that can be stored in the

 InputBufferSize

24-57

software input buffer during a read operation. By default, InputBufferSize is 512
bytes. There could be a case when you would want to increase it to higher than the
default size.

Create a serial port object associated with the COM1 port. Set the input buffer size to
768 bytes.

s = serial('COM1');
s.InputBufferSize = 768;

See Also

Functions

fclose, fgetl, fgets, fopen, fread, fscanf

Properties

Status

24 Properties — Alphabetical List

24-58

InputDatagramPacketSize
Specify length of data received in a datagram

Description
Specify the length of the data received in a datagram. The size is the number of bytes of
the packet's data buffer used to receive data.

If the data in a datagram packet is larger than the InputDatagramPacketSize the
incoming data is truncated and some data is lost.

Characteristics
Usage UDP
Read only When open
Data type Double

Values
You can specify a size, in bytes, between 1 and 65,535. The default value is 512.

See Also

Functions

udp

Properties

OutputDatagramPacketSize

 InputDatagramPacketSize

24-59

InstrumentModel
Instrument model that object connects to

Description
InstrumentModel returns the information returned by the instrument identification
command, e.g., *IDN?, *ID?. The instrument identification command is defined by the
instrument driver.

Characteristics
Usage Device
Read only Always
Data type Character vector

Values
InstrumentModel will be an empty character vector until the object is connected to the
instrument with the connect function and the property value is queried.

See Also

Functions

connect, get

24 Properties — Alphabetical List

24-60

Interface
Interface object that communicates with instrument

Description
If DriverType is MATLAB Instrument Driver, then Interface is the interface object
used to communicate with the instrument. If DriverType is VXIplug&play or IVI-C,
then Interface is the handle to the VISA session that is used to communicate with the
instrument.

Characteristics
Usage Device
Read only Always
Data type Character vector

Values
Interface is defined at device object creation.

See Also

Properties

DriverType, LogicalName, RsrcName

 Interface

24-61

InterfaceIndex
Specify USB interface number

Description
You configure InterfaceIndex to be the USB interface number.

The Name and RsrcName properties are automatically updated to reflect the
InterfaceIndex value.

You can configure InterfaceIndex only when the object is disconnected from the
instrument. You disconnect a connected object with the fclose function. A disconnected
object has a Status property value of closed.

Characteristics
Usage VISA-USB
Read only While open
Data type Double

See Also

Functions

fclose

Properties

Name, RsrcName

24 Properties — Alphabetical List

24-62

InterruptFcn
Specify callback function to execute when interrupt event occurs

Description
You configure InterruptFcn to execute a callback function when an interrupt event
occurs. An interrupt event is generated when a VXI bus signal or a VXI bus interrupt is
received from the instrument.

Note An interrupt event can be generated at any time during the instrument control
session.

If the RecordStatus property value is on, and an interrupt event occurs, the record file
records

• The event type as Interrupt
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

Characteristics
Usage VISA-VXI
Read only Never
Data type Character vector

Values
The default value is an empty character vector.

 InterruptFcn

24-63

See Also

Functions
record

Properties

RecordStatus

24 Properties — Alphabetical List

24-64

LANName
Specify LAN device name

Description
You configure LANName to be the LAN (Local Area Network) device name.

The Name and RsrcName properties are automatically updated to reflect the LANName
value.

You can configure LANName only when the object is disconnected from the instrument.
You disconnect a connected object with the fclose function. A disconnected object has a
Status property value of closed.

Characteristics
Usage VISA-TCPIP
Read only While open
Data type Character vector

See Also

Functions

fclose

Properties

Name, RsrcName

 LANName

24-65

LocalHost
Specify local host

Description
LocalHost specifies the local host name or the IP dotted decimal address. An example
dotted decimal address is 144.212.100.10. If you have only one address or you do not
specify this property, the object uses the default IP address when you connect to the
hardware with the fopen function.

You can configure LocalHost only when the object is disconnected from the hardware.
You disconnect a connected object with the fclose function. A disconnected object has a
Status property value of closed.

Characteristics
Usage TCPIP, UDP
Read only While open
Data type Character vector

Values
The default value is an empty character vector.

See Also

Functions

fclose, fopen, tcpip, udp

24 Properties — Alphabetical List

24-66

Properties

LocalPort, RemoteHost, Status

 LocalHost

24-67

LocalPort
Specify local host port for connection

Description
You configure LocalPort to be the port value of the local host. The default value is [].

If LocalPortMode is set to auto or if LocalPort is [], the property is assigned any free
port when you connect the object to the hardware with the fopen function. If
LocalPortMode is set to manual, the specified LocalPort value is used when you issue
fopen. If you explicitly configure LocalPort, LocalPortMode is automatically set to
manual.

You can configure LocalPort only when the object is disconnected from the hardware.
You disconnect a connected object with the fclose function. A disconnected object has a
Status property value of closed.

Characteristics
Usage TCPIP, UDP
Read only While open
Data type Double

Values
The default value is [].

See Also

Functions
fclose, fopen, tcpip, udp

24 Properties — Alphabetical List

24-68

Properties

LocalHost, LocalPortMode, Status

 LocalPort

24-69

LocalPortMode
Specify local host port selection mode

Description
LocalPortMode specifies the selection mode for the LocalPort property when you
connect a TCPIP or UDP object.

If LocalPortMode is set to auto, the MATLAB workspace uses any free local port. If
LocalPortMode is set to manual, the specified LocalPort value is used when you issue
the fopen function. If you explicitly specify a value for LocalPort, LocalPortMode is
automatically set to manual.

Characteristics
Usage TCPIP, UDP
Read only While open
Data type Character vector

Values
{auto} Use any free local port.
manual Use the specified local port value.

See Also

Functions

fclose, fopen, tcpip, udp

24 Properties — Alphabetical List

24-70

Properties

LocalHost, LocalPort, Status

 LocalPortMode

24-71

LogicalAddress
Specify logical address of VXI instrument

Description
For VISA-VXI and VISA-GPIB-VXI objects, you configure LogicalAddress to be the
logical address of the VXI instrument. You must include the logical address as part of the
resource name during object creation using the visa function.

The Name and RsrcName properties are automatically updated to reflect the
LogicalAddress value.

You can configure LogicalAddress only when the object is disconnected from the
instrument. You disconnect a connected object with the fclose function. A disconnected
object has a Status property value of closed.

Characteristics
Usage VISA-VXI, VISA-GPIB-VXI
Read only While open
Data type Double

Values
The value is defined when the instrument object is created.

Examples
This example creates a VISA-VXI object associated with chassis 4 and logical address 1,
and then returns the logical address.

vv = visa('agilent','VXI4::1::INSTR');
vv.LogicalAddress

24 Properties — Alphabetical List

24-72

ans =
 1

See Also

Functions

fclose, visa

Properties

Name, RsrcName, Status

 LogicalAddress

24-73

LogicalName
Specify description of interface used to communicate with instrument

Description
For device objects with a DriverType property value of MATLAB Instrument Driver,
the LogicalName property specifies the type of interface used to communicate with the
instrument. For example, a LogicalName of GPIB0-2 indicates that communication is
through a GPIB board at index 0 with an instrument at primary address 2.

For device objects with a DriverType property value of VXIplug&play, the
LogicalName is the resource name used to communicate with the instrument.

For device objects with a DriverType property value of IVI-C, the LogicalName is the
LogicalName associated with the IVI-C driver.

Characteristics
Usage Device
Read only Always
Data type Character vector

Values
LogicalName is defined at device object creation.

See Also

Properties

DriverType, Interface, RsrcName

24 Properties — Alphabetical List

24-74

LogicalNames
Array of logical names contained in IVI configuration store

Description
Each entry in LogicalNames identifies a logical name in the IVI configuration store.
Each logical name references a driver session in the configuration store, and is used in
creating device objects with the icdevice function.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Array of Structs

See Also

Functions
icdevice

Properties

DriverSessions

 LogicalNames

24-75

ManufacturerID
Specify manufacturer ID of USB instrument

Description
You configure ManufacturerID to be the manufacturer ID of the USB instrument.

The Name and RsrcName properties are automatically updated to reflect the
ManufacturerID value.

You can configure ManufacturerID only when the object is disconnected from the
instrument. You disconnect a connected object with the fclose function. A disconnected
object has a Status property value of closed.

Characteristics
Usage VISA-USB
Read only While open
Data type Character vector

See Also

Functions

fclose

Properties

Name, RsrcName

24 Properties — Alphabetical List

24-76

MappedMemoryBase
Base memory address of mapped memory

Description
MappedMemoryBase is the base address of the mapped memory used for low level read
and write operations.

The memory address is returned as a character vector representing a hexadecimal value.
For example, if the mapped memory base is 200000, then MappedMemoryBase returns
200000H. If no memory is mapped, MappedMemoryBase is 0H.

Use the memmap function to map the specified amount of memory in the specified address
space (A16, A24, or A32) with the specified offset. Use the memunmap function to unmap
the memory space.

Characteristics
Usage VISA-VXI, VISA-GPIB-VXI
Read only Always
Data type Character vector

Values
The default value is 0H.

Examples
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and an
Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

 MappedMemoryBase

24-77

Map 16 bytes in the A16 address space with no offset, and then return the base address
of the mapped memory.

memmap(vv,'A16',0,16)
vv.MappedMemoryBase
ans =
 16737610H

See Also

Functions

memmap, memunmap

Properties

MappedMemorySize

24 Properties — Alphabetical List

24-78

MappedMemorySize
Size of mapped memory for low-level read and write operations

Description
MappedMemorySize indicates the amount of memory mapped for low-level read and
write operations.

Use the memmap function to map the specified amount of memory in the specified address
space (A16, A24, or A32) with the specified offset. Use the memunmap function to unmap
the memory space.

Characteristics
Usage VISA-VXI, VISA-GPIB-VXI
Read only Always
Data type Double

Values
The default value is 0.

Examples
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and an
Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Map 16 bytes in the A16 address space with no offset, and then return the size of the
mapped memory.

 MappedMemorySize

24-79

memmap(vv,'A16',0,16)
vv.MappedMemorySize
ans =
 16

See Also

Functions

memmap, memunmap

Properties

MappedMemoryBase

24 Properties — Alphabetical List

24-80

MasterLocation
Full pathname of master configuration store file

Description
MasterLocation identifies the master (default) configuration store location.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Character vector

Values
The default value is set at IVI installation.

See Also

Properties

ActualLocation, ProcessLocation

 MasterLocation

24-81

MemoryBase
Base address of A24 or A32 space

Description
MemoryBase indicates the base address of the A24 or A32 space. The value is returned
as a character vector representing a hexadecimal value.

All VXI instruments have an A16 address space that is 16 bits wide. There are also 24-
and 32-bit wide address spaces known as A24 and A32. Some instruments require the
additional memory associated with the A24 or A32 address space when the 64 bytes of
A16 space are insufficient for performing necessary functions. A bit in the A16 address
space is set allowing the instrument to recognize commands to its A24 or A32 space.

An instrument cannot use both the A24 and A32 address space. The address space is
given by the MemorySpace property. If MemorySpace is A16, then MemoryBase is 0H.

Characteristics
Usage VISA-VXI, VISA-GPIB-VXI
Read only Always
Data type Character vector

Values
The default value is 0H.

Examples
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and an
Agilent E1432A digitizer with logical address 130.

24 Properties — Alphabetical List

24-82

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

The MemorySpace property indicates that the A24 memory space is supported.

vv.MemorySpace
ans =
A16/A24

The base address of the A24 space is

vv.MemoryBase
ans =
'200000H'

See Also

Properties

MemorySpace

 MemoryBase

24-83

MemoryIncrement
Specify whether VXI register offset increments after data is transferred

Description
You can configure MemoryIncrement to be block or FIFO. If MemoryIncrement is
block, the memread and memwrite functions increment the offset after every read and
write operation, and data is transferred from or to consecutive memory elements. If
MemoryIncrement is FIFO, the memread and memwrite functions do not increment the
VXI register offset, and data is always read from or written to the same memory element.

Characteristics
Usage VISA-VXI, VISA-GPIB-VXI
Read only Never
Data type Character vector

Values
{block} Increment the VXI register offset.
FIFO Do not increment the VXI register offset.

Examples
Create the VISA-VXI object v associated with a VXI chassis with index 0, and an
instrument with logical address 8.

v = visa('ni','VXI0::8::INSTR');
fopen(v)

Configure the hardware for a FIFO read and write operation.

v.MemoryIncrement = 'FIFO'

24 Properties — Alphabetical List

24-84

Write two values to the VXI register starting at offset 16. Because MemoryIncrement is
FIFO, the VXI register offset does not change and both values are written to offset 16.

memwrite(v,[1984 2000],16,'uint32','A16')

Read the value at offset 16. The value returned is the second value written with the
memwrite function.

memread(v,16,'uint32')
ans =
2000

Read two values starting at offset 16. Note that both values are read at offset 16.

memread(v,16,'uint32','A16',2);
ans =
2000
2000

Configure the hardware for a block read and write operation.

v.MemoryIncrement = 'block'

Write two values to the VXI register starting at offset 16. The first value is written to
offset 16 and the second value is written to offset 20 because a uint32 value consists of
four bytes.

memwrite(v,[1984 2000],16,'uint32','A16')

Read the value at offset 16. The value returned is the first value written with the
memwrite function.

memread(v,16,'uint32')
ans =
1984

Read two values starting at offset 16. The first value is read at offset 16 and the second
value is read at offset 20.

memread(v,16,'uint32','A16',2);
ans =
1984
2000

 MemoryIncrement

24-85

See Also

Functions

mempeek, mempoke, memread, memwrite

24 Properties — Alphabetical List

24-86

MemorySize
Size of memory requested in A24 or A32 address space

Description
MemorySize indicates the size of the memory requested by the instrument in the A24 or
A32 address space.

Some instruments use the A24 or A32 address space when the 64 bytes of A16 space are
not enough for performing necessary functions. An instrument cannot use both the A24
and A32 address space. The address space is given by the MemorySpace property. If
MemorySpace is A16, then MemorySize is 0.

Characteristics
Usage VISA-VXI, VISA-GPIB-VXI
Read only Always
Data type Double

Values
The default value is 0.

Examples
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and an
Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

The MemorySpace property indicates that the A24 memory space is supported.

 MemorySize

24-87

vv.MemorySpace
ans =
A16/A24

The size of the A24 space is

vv.MemorySize
ans =
262144

See Also

Properties

MemorySpace

24 Properties — Alphabetical List

24-88

MemorySpace
Address space used by instrument

Description
MemorySpace indicates the address space requested by the instrument. MemorySpace
can be A16, A16/A24, or A16/A32. If MemorySpace is A16, the instrument uses only the
A16 address space. If MemorySpace is A16/A24, the instrument uses the A16 and A24
address space. If MemorySpace is A16/A32, the instrument uses the A16 and A32
address space.

All VXI instruments have an A16 address space that is 16 bits wide. There are also 24-
and 32-bit wide address spaces known as A24 and A32, respectively. Some instruments
use this memory when the 64 bytes of A16 space are not enough for performing necessary
functions. An instrument cannot use both the A24 and A32 address space.

The size of the memory is given by the MemorySize property. The base address of the
memory is given by the MemoryBase property.

Characteristics
Usage VISA-VXI, VISA-GPIB-VXI
Read only Always
Data type Character vector

Values
{A16} The instrument uses the A16 address space.
A16/A24 The instrument uses the A16 and A24 address space.
A16/A32 The instrument uses the A16 and A32 address space.

 MemorySpace

24-89

Examples
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and an
Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Return the memory space supported by the instrument.

vv.MemorySpace
ans =
A16/A24

This value indicates that the instrument supports A24 memory space in addition to the
A16 memory space.

See Also

Properties

MemoryBase, MemorySize

24 Properties — Alphabetical List

24-90

ModelCode
Specify model code of USB instrument

Description
You configure ModelCode to be the model code of the USB instrument.

The Name and RsrcName properties are automatically updated to reflect the ModelCode
value.

You can configure ModelCode only when the object is disconnected from the instrument.
You disconnect a connected object with the fclose function. A disconnected object has a
Status property value of closed.

Characteristics
Usage VISA-USB
Read only While open
Data type Character vector

See Also

Functions

fclose

Properties

Name, RsrcName

 ModelCode

24-91

Name
Specify descriptive name for instrument object

Description
You configure Name to be a descriptive name for an instrument object.

When you create an instrument object, a descriptive name is automatically generated
and stored in Name. However, you can change this value at any time. As shown below,
the components of Name reflect the instrument object type and the input arguments you
supply to the creation function.
Instrument Object Default Value of Name
GPIB GPIB and BoardIndex-PrimaryAddress-SecondaryAddress
serial port Serial and Port
TCPIP TCPIP and RemoteHost
UDP UDP and RemoteHost
VISA-serial VISA-Serial and Port
VISA-GPIB VISA-GPIB and BoardIndex-PrimaryAddress-

SecondaryAddress
VISA-VXI VISA-VXI and ChassisIndex-LogicalAddress
VISA-GPIB-VXI VISA-GPIB-VXI and ChassisIndex-LogicalAddress
VISA-TCPIP VISA-TCPIP and BoardIndex-RemoteHost-LANName
VISA-RSIB VISA-RSIB and RemoteHost
VISA-USB VISA-USB and BoardIndex-ManufacturerID- ModelCode-

SerialNumber-InterfaceIndex

If the secondary address is not specified when a GPIB or VISA-GPIB object is created,
then Name does not include this component.

If you change the value of any property that is a component of Name (for example, Port
or PrimaryAddress), then Name is automatically updated to reflect those changes.

24 Properties — Alphabetical List

24-92

Characteristics
Usage Any instrument object
Read-only Never
Data type Character vector

Values
Name is automatically defined at object creation time. The value of Name depends on the
specific instrument object you create.

 Name

24-93

Name (iviconfigurationstore)
Name of IVI configuration server

Description
Name identifies the name of the IVI configuration store server. This is not user-
configurable.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Character vector

24 Properties — Alphabetical List

24-94

NetworkRole
Specify server socket connection

Description
The NetworkRole property in the tcpip interface enables support for Server Sockets. It
uses two values, client and server, to establish a connection as the client or the
server.

The server sockets feature supports binary and ASCII transfers and supports a single
remote connection.

Characteristics
Usage TCPIP
Read only While open
Data type Character vector

Values
The default value is client.
client Establish a TCP/IP connection as a client (default)
server Establish a TCP/IP connection as a server

See Also

Functions

fclose, fopen, tcpip

 NetworkRole

24-95

How To

“Communicate Using TCP/IP Server Sockets” on page 7-64

24 Properties — Alphabetical List

24-96

ObjectVisibility
Control access to instrument object

Description
The ObjectVisibility property provides a way for application developers to prevent
end-user access to the instrument objects created by their application. When an object's
ObjectVisibility property is set to off, instrfind and instrreset do not return
or delete those objects.

Objects that are not visible are still valid. If you have access to the object (for example,
from within the file that creates it), then you can set and get its properties and pass it to
any function that operates on instrument objects.

Characteristics
Usage Any instrument object
Read only Never
Data type Character vector

Values
The default value is on.
{on} Object is visible to instrfind and instrreset
off Object is not visible from the command line (except by

instrfindall)

Examples
The following statement creates an instrument object with its ObjectVisibility
property set to off:

 ObjectVisibility

24-97

g = gpib('mcc',0,2,'ObjectVisibility','off');
instrfind
ans =
 []

However, since the object is in the workspace (g), you can access it.

g.ObjectVisibility
ans =

 off

See Also

Functions

instrfind, instrfindall, instrreset

24 Properties — Alphabetical List

24-98

OutputBufferSize
Specify size of output buffer in bytes

Description
You configure OutputBufferSize as the total number of bytes that can be stored in the
software output buffer during a write operation.

An error occurs if the output buffer cannot hold all the data to be written. You write text
data with the fprintf function. You write binary data with the fwrite function.

You can configure OutputBufferSize only when the instrument object is disconnected
from the instrument. You disconnect an object with the fclose function. A disconnected
object has a Status property value of closed.

Characteristics
Usage Any instrument object
Read only While open
Data type Double

Values
The default value is 512 bytes.

Examples
This example shows how to set the output buffer size for a serial port object. The
OutputBufferSize property specifies the maximum number of bytes that can be
written to the instrument at once. By default, OutputBufferSize is 512 bytes. There
could be a case when you would want to limit it to less than the default size.

 OutputBufferSize

24-99

Create a serial port object associated with the COM1 port. Set the output buffer size to
256 bytes.

s = serial('COM1');
s.OutputBufferSize = 256;

See Also

Functions

fprintf, fwrite

Properties

Status

24 Properties — Alphabetical List

24-100

OutputDatagramPacketSize
Specify length of data sent in a datagram

Description
Specify the length of the data sent in a datagram. The size is the number of bytes of the
packet's data buffer used to send data.

If the data in a datagram packet is larger than the packet size the target device receives,
some data is lost.

Characteristics
Usage UDP
Read only When open
Data type Double

Values
You can specify a size, in bytes, between 1 and 65,535. The default value is 512.

See Also

Functions

udp

Properties

InputDatagramPacketSize

 OutputDatagramPacketSize

24-101

OutputEmptyFcn
Specify callback function to execute when output buffer is empty

Description
You configure OutputEmptyFcn to execute a callback function when an output-empty
event occurs. An output-empty event is generated when the last byte is sent from the
output buffer to the instrument.

Note An output-empty event can be generated only for asynchronous write operations.

If the RecordStatus property value is on, and an output-empty event occurs, the record
file records this information:

• The event type as OutputEmpty
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and Executing Callback
Functions” on page 4-32.

Characteristics
Usage Any instrument object
Read only Never
Data type Callback function

Values
The default value is an empty character vector.

24 Properties — Alphabetical List

24-102

See Also

Functions
record

Properties

RecordStatus

 OutputEmptyFcn

24-103

Parent
Parent (device object) of device group object

Description
The parent of a device group object is defined as the device object that contains the device
group object.

You can create a copy of the device object containing a particular device group object by
returning the value of Parent. This copy can be treated like any other device object. For
example, you can configure property values, connect to the instrument, and so on.

Characteristics
Usage Device group
Read only Always
Data type Device object

Values
Parent is defined at device object creation.

24 Properties — Alphabetical List

24-104

Parity
Specify type of parity checking

Description
You can configure Parity to be none, odd, even, mark, or space. If Parity is none,
parity checking is not performed and the parity bit is not transmitted. If Parity is odd,
the number of mark bits (1s) in the data is counted, and the parity bit is asserted or
unasserted to obtain an odd number of mark bits. If Parity is even, the number of mark
bits in the data is counted, and the parity bit is asserted or unasserted to obtain an even
number of mark bits. If Parity is mark, the parity bit is asserted. If Parity is space,
the parity bit is unasserted.

Parity checking can detect errors of one bit only. An error in two bits might cause the
data to have a seemingly valid parity, when in fact it is incorrect. To learn more about
parity checking, refer to “The Parity Bit” on page 6-10.

In addition to the parity bit, the serial data format consists of a start bit, between five
and eight data bits, and one or two stop bits. You specify the number of data bits with the
DataBits property, and the number of stop bits with the StopBits property.

Characteristics
Usage Serial port, VISA-serial
Read only Never
Data type Character vector

Values
{none} No parity checking
odd Odd parity checking
even Even parity checking
mark Mark parity checking

 Parity

24-105

space Space parity checking

Examples
This example shows how to set the parity for a serial port object.

Create a serial port object associated with the COM1 port. The default setting for
Parity is none, so if you want to use parity checking, change the value to the type you
want to use, for example, odd.

s = serial('COM1');
s.Parity = 'odd';

See Also

Properties

DataBits, StopBits

24 Properties — Alphabetical List

24-106

PinStatus
State of CD, CTS, DSR, and RI pins

Description
PinStatus is a structure array that contains the fields CarrierDetect, ClearToSend,
DataSetReady and RingIndicator. These fields indicate the state of the Carrier
Detect (CD), Clear to Send (CTS), Data Set Ready (DSR) and Ring Indicator (RI) pins,
respectively. Refer to “The Control Pins” on page 6-6 to learn more about these pins.

PinStatus can be on or off for any of these fields. A value of on indicates the
associated pin is asserted. A value of off indicates the associated pin is unasserted. For
serial port objects, a pin status event occurs when any of these pins changes its state. A
pin status event executes the file specified by PinStatusFcn.

In normal usage, the Data Terminal Ready (DTR) and DSR pins work together, while the
Request To Send (RTS) and CTS pins work together. You can specify the state of the
DTR pin with the DataTerminalReady property. You can specify the state of the RTS
pin with the RequestToSend property.

Refer to “Connecting Two Modems” on page 6-41 for an example that uses PinStatus.

Characteristics
Usage Serial port, VISA-serial
Read only Always
Data type Structure

Values
off The associated pin is asserted
on The associated pin is asserted

The default value is instrument dependent.

 PinStatus

24-107

See Also

Properties

DataTerminalReady, PinStatusFcn, RequestToSend

24 Properties — Alphabetical List

24-108

PinStatusFcn
Specify callback function to execute when CD, CTS, DSR, or RI pin changes state

Description
You configure PinStatusFcn to execute a callback function when a pin status event
occurs. A pin status event occurs when the Carrier Detect (CD), Clear to Send (CTS),
Data Set Ready (DSR) or Ring Indicator (RI) pin changes state. A serial port pin changes
state when it is asserted or unasserted. Information about the state of these pins is
recorded in the PinStatus property.

Note A pin status event can be generated at any time during the instrument control
session.

If the RecordStatus property value is on, and a pin status event occurs, the record file
records this information:

• The event type as PinStatus
• The pin that changed its state, and pin state as either on or off
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and Executing Callback
Functions” on page 4-32.

Characteristics
Usage Serial port
Read only Never
Data type Callback function

 PinStatusFcn

24-109

Values
The default value is an empty character vector.

See Also

Functions
record

Properties

PinStatus, RecordStatus

24 Properties — Alphabetical List

24-110

Port
Specify platform-specific serial port name

Description
You configure Port to be the name of a serial port on your platform. Port specifies the
physical port associated with the object and the instrument.

When you create a serial port or VISA-serial object, Port is automatically assigned the
port name specified for the serial or visa function.

You can configure Port only when the object is disconnected from the instrument. You
disconnect an object with the fclose function. A disconnected object has a Status
property value of closed.

Characteristics
Usage Serial port, VISA-serial
Read only While open
Data type Character vector

Values
The value is determined when the instrument object is created.

Examples
Suppose you create a serial port and VISA-serial object associated with serial port
COM1.

s = serial('COM1')
vs = visa('ni','ASRL1::INSTR')

 Port

24-111

The Port property values are given below.

[s vs].Port
ans =
 'COM1'
 'ASRL1'

See Also

Functions

fclose, serial, visa

Properties

Name, RsrcName, Status

24 Properties — Alphabetical List

24-112

PrimaryAddress
Specify primary address of GPIB instrument

Description
For GPIB and VISA-GPIB objects, you configure PrimaryAddress to be the GPIB
primary address associated with your instrument. The primary address can range from 0
to 30, and you must specify it during object creation using the gpib or visa function. For
VISA-GPIB-VXI objects, PrimaryAddress is read-only, and the value is returned
automatically by the VISA interface after the object is connected to the instrument with
the fopen function.

For GPIB and VISA-GPIB objects, the Name property is automatically updated to reflect
the PrimaryAddress value. For VISA-GPIB objects, the RsrcName property is
automatically updated to reflect the PrimaryAddress value.

You can configure PrimaryAddress only when the GPIB or VISA-GPIB object is
disconnected from the instrument. You disconnect a connected object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics
Usage GPIB, VISA-GPIB, VISA-GPIB-VXI
Read only While open (GPIB, VISA-GPIB), always (VISA-GPIB-VXI)
Data type Double

Values
PrimaryAddress can range from 0 to 30. The value is determined when the instrument
object is created.

 PrimaryAddress

24-113

Examples
This example creates a VISA-GPIB object associated with board 0, primary address 1,
and secondary address 8, and then returns the primary address.

vg = visa('agilent','GPIB0::1::8::INSTR');
vg.PrimaryAddress
ans =
 1

See Also

Functions

fclose, gpib, visa

Properties

Name, RsrcName, Status

24 Properties — Alphabetical List

24-114

ProcessLocation
Configuration store file for process to use if master configuration store is not used

Description
ProcessLocation identifies an IVI configuration store being used as an alternative to
the master configuration store. The use of an alternative is particular to each
iviconfigurationstore object, and is specified when the object is created.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Character vector

Values
The default value is an empty character vector.

See Also

Functions

iviconfigurationstore

Properties

ActualLocation, MasterLocation

 ProcessLocation

24-115

PublishedAPIs
Array of published APIs in IVI configuration store

Description
PublishedAPIs identifies the published APIs in the IVI configuration store server. This
is not user-configurable.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Array of Structs

24 Properties — Alphabetical List

24-116

ReadAsyncMode
Specify whether asynchronous read operation is continuous or manual

Description
You can configure ReadAsyncMode to be continuous or manual. If ReadAsyncMode is
continuous, the object continuously queries the instrument to determine if data is
available to be read. If data is available, it is automatically read and stored in the input
buffer. If issued, the readasync function is ignored.

If ReadAsyncMode is manual, the object will not query the instrument to determine if
data is available to be read. Instead, you must manually issue the readasync function to
perform an asynchronous read operation. Because readasync checks for the terminator,
this function can be slow. To increase speed, you should configure ReadAsyncMode to
continuous.

Note If the instrument is ready to transmit data, then it will do so regardless of the
ReadAsyncMode value. Therefore, if ReadAsyncMode is manual and a read operation is
not in progress, then data can be lost. To guarantee that all transmitted data is stored in
the input buffer, you should configure ReadAsyncMode to continuous.

You can determine the amount of data available in the input buffer with the
BytesAvailable property. For either ReadAsyncMode value, you can bring data into
the MATLAB workspace with one of the synchronous read functions such as fscanf,
fgetl, fgets, or fread.

Characteristics
Usage Serial port, TCPIP, UDP, VISA-serial
Read only Never
Data type Character vector

 ReadAsyncMode

24-117

Values
{continuous} Continuously query the instrument to determine if data is available

to be read.
manual Manually read data from the instrument using the readasync

function.

See Also

Functions

fgetl, fgets, fread, fscanf, readasync

Properties

BytesAvailable, InputBufferSize

24 Properties — Alphabetical List

24-118

RecordDetail
Specify amount of information saved to record file

Description
You can configure RecordDetail to be compact or verbose. If RecordDetail is
compact, the number of values written to the instrument, the number of values read
from the instrument, the data type of the values, and event information are saved to the
record file. If RecordDetail is verbose, the data transferred to and from the
instrument is also saved to the record file.

The verbose record file structure is shown in “Recording Information to Disk” on page 17-
9.

Characteristics
Usage Any instrument object
Read only Never
Data type Character vector

Values
{compact} The number of values written to the instrument, the number of values

read from the instrument, the data type of the values, and event
information are saved to the record file.

verbose The data written to the instrument, and the data read from the
instrument are also saved to the record file.

 RecordDetail

24-119

See Also

Functions
record

Properties

RecordMode, RecordName, RecordStatus

24 Properties — Alphabetical List

24-120

RecordMode
Specify whether data and event information are saved to one or to multiple record files

Description
You can configure RecordMode to be overwrite, append, or index. If RecordMode is
overwrite, then the record file is overwritten each time recording is initiated. If
RecordMode is append, then data is appended to the record file each time recording is
initiated. If RecordMode is index, a different record file is created each time recording is
initiated, each with an indexed filename.

You can configure RecordMode only when the object is not recording. You terminate
recording with the record function. A object that is not recording has a RecordStatus
property value of off.

You specify the record filename with the RecordName property. The indexed filename
follows a prescribed set of rules. Refer to “Specifying a File Name” on page 17-6 for a
description of these rules.

Characteristics
Usage Any instrument object
Read only While recording
Data type Character vector

Values
{overwrite} The record file is overwritten.
append Data is appended to the record file.
index Multiple record files are written, each with an indexed filename.

 RecordMode

24-121

Examples
Suppose you create the serial port object s on a Windows machine associated with the
serial port COM1.

s = serial('COM1');
fopen(s)

Specify the record filename with the RecordName property, configure RecordMode to
index, and initiate recording.

s.RecordName = 'myrecord.txt';
s.RecordMode = 'index';
record(s)

The record filename is automatically updated with an indexed filename after recording is
turned off.

record(s,'off')
s.RecordName
ans =
myrecord01.txt

Disconnect s from the instrument, and remove s from memory and from the MATLAB
workspace.

fclose(s)
delete(s)
clear s

See Also

Functions

record

Properties

RecordDetail, RecordName, RecordStatus

24 Properties — Alphabetical List

24-122

RecordName
Specify name of record file

Description
You configure RecordName to be the name of the record file. You can specify any value
for RecordName — including a directory path — provided the filename is supported by
your operating system.

The MATLAB software supports any filename supported by your operating system.
However, if you access the file through the MATLAB workspace, you might need to
specify the filename using single quotes. For example, suppose you name the record file
my record.txt. To type this file at the MATLAB Command Window, you must include
the name in quotes.

type('my record.txt')

You can specify whether data and event information are saved to one disk file or to
multiple disk files with the RecordMode property. If RecordMode is index, then the
filename follows a prescribed set of rules. Refer to “Specifying a File Name” on page 17-6
for a description of these rules.

You can configure RecordName only when the object is not recording. You terminate
recording with the record function. An object that is not recording has a RecordStatus
property value of off.

Characteristics
Usage Any instrument object
Read only While recording
Data type Character vector

 RecordName

24-123

Values
The default record file name is record.txt.

See Also

Functions
record

Properties

RecordDetail, RecordMode, RecordStatus

24 Properties — Alphabetical List

24-124

RecordStatus
Status of whether data and event information are saved to record file

Description
You can configure RecordStatus to be off or on with the record function. If
RecordStatus is off, then data and event information are not saved to a record file. If
RecordStatus is on, then data and event information are saved to the record file
specified by RecordName.

Use the record function to initiate or complete recording. RecordStatus is
automatically configured to reflect the recording state.

Characteristics
Usage Any instrument object
Read only Always
Data type Character vector

Values
{off} Data and event information are not written to a record file
on Data and event information are written to a record file

See Also

Functions

record

 RecordStatus

24-125

Properties

RecordDetail, RecordMode, RecordName

24 Properties — Alphabetical List

24-126

RemoteHost
Specify remote host

Description
RemoteHost specifies the remote host name or IP dotted decimal address. An example
dotted decimal address is 144.212.100.10.

For TCPIP objects, you can configure RemoteHost only when the object is disconnected
from the hardware. You disconnect a connected object with the fclose function. A
disconnected object has a Status property value of closed.

For UDP objects, you can configure RemoteHost at any time. If the object is open, a
warning is issued if the remote address is invalid.

Characteristics
Usage TCPIP, UDP
Read only While open (TCPIP), never (UDP)
Data type Character vector

Values
The value is defined when you create the TCPIP or UDP object.

See Also

Functions

fclose, fopen, tcpip, udp

 RemoteHost

24-127

Properties

LocalHost, RemotePort, Status

24 Properties — Alphabetical List

24-128

RemotePort
Specify remote host port for connection

Description
You can configure RemotePort to be any port number between 1 and 65535. The default
value is 80 for TCPIP objects and 9090 for UDP objects.

For TCPIP objects, you can configure RemotePort only when the object is disconnected
from the hardware. You disconnect a connected object with the fclose function. A
disconnected object has a Status property value of closed.

For UDP objects, you can configure RemotePort at any time.

Characteristics
Usage TCPIP, UDP
Read only While open (TCPIP), never (UDP)
Data type Double

Values
Any port number between 1 and 65535. The default value is 80 for TCPIP objects and
9090 for UDP objects.

See Also

Functions

fclose, fopen, tcpip, udp

 RemotePort

24-129

Properties

RemoteHost, LocalPort, Status

24 Properties — Alphabetical List

24-130

RequestToSend
Specify state of RTS pin

Description
You can configure RequestToSend to be on or off. If RequestToSend is on, the
Request to Send (RTS) pin is asserted. If RequestToSend is off, the RTS pin is
unasserted.

In normal usage, the RTS and Clear to Send (CTS) pins work together, and are used as
standard handshaking pins for data transfer. In this case, RTS and CTS are
automatically managed by the DTE and DCE. However, there is nothing in the RS-232,
or the RS-484 standard that states the RTS pin must to be used in any specific way.
Therefore, if you manually configure the RequestToSend value, it is probably for
nonstandard operations.

If your instrument does not use hardware handshaking in the standard way, and you
need to manually configure RequestToSend, then you should configure the
FlowControl property to none. Otherwise, the RequestToSend value that you specify
might not be honored. Refer to your instrument documentation to determine its specific
pin behavior.

You can return the value of the CTS pin with the PinStatus property. Handshaking is
described in “The Control Pins” on page 6-6.

Characteristics
Usage Serial port, VISA-serial
Read only Never
Data type Character vector

Values
{on} The RTS pin is asserted.

 RequestToSend

24-131

off The RTS pin is unasserted.

See Also

Properties

FlowControl, PinStatus

24 Properties — Alphabetical List

24-132

Revision
IVI configuration store version

Description
Revision identifies the version of the IVI configuration store. This is not user-
configurable.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Character vector

 Revision

24-133

RsrcName
Resource name for VISA instrument

Description
RsrcName indicates the resource name for a VISA instrument. When you create a VISA
object, RsrcName is automatically assigned the value specified in the visa function.

The resource name is a symbolic name for the instrument. The resource name you supply
to visa depends on the interface and has the format shown below. The components in
brackets are optional and have a default value of 0, except port_number, which has a
default value of 1.

Interface Resource Name
VXI VXI[chassis]::VXI_logical_address::INSTR
GPIB-VXI GPIB-VXI[chassis]::VXI_logical_address::INSTR
GPIB GPIB[board]::primary_address[::secondary_address]::INSTR
TCPIP TCPIP[board]::remote_host[::lan_device_name]::INSTR
RSIB RSIB::remote_host::INSTR
Serial ASRL[port_number]::INSTR
USB USB[board]::manid::model_code::serial_No[::interface_No]::INSTR

If you change the BoardIndex, ChassisIndex, InterfaceIndex, LANName,
LogicalAddress, ManufacturerID, ModelCode, Port, PrimaryAddress,
RemoteHost, SecondaryAddress, or SerialNumber property value, RsrcName is
automatically updated to reflect the change.

Characteristics
Usage VISA-GPIB, VISA-VXI, VISA-GPIB-VXI, VISA-serial
Read only Always
Data type Character vector

24 Properties — Alphabetical List

24-134

Values
The value is defined when the instrument object is created.

Examples
To create a VISA-GPIB object associated with a GPIB controller with board index 0 and
an instrument with primary address 1, you supply the following resource name to the
visa function.

vg = visa('ni','GPIB0::1::INSTR');

To create a VISA-VXI object associated with a VXI chassis with index 0 and an
instrument with logical address 130, you supply the following resource name to the visa
function.

vv = visa('agilent','VXI0::130::INSTR');

To create a VISA-GPIB-VXI object associated with a VXI chassis with index 0 and an
instrument with logical address 80, you supply the following resource name to the visa
function.

vgv = visa('agilent','GPIB-VXI0::80::INSTR');

To create a VISA-serial object associated with the COM1 serial port, you supply the
following resource name to the visa function.

vs = visa('ni','ASRL1::INSTR');

See Also

Functions

visa

 RsrcName

24-135

Properties

BoardIndex, ChassisIndex, InterfaceIndex, LANName, LogicalAddress, ManufacturerID,
ModelCode, Port, PrimaryAddress, RemoteHost, SecondaryAddress, SerialNumber

24 Properties — Alphabetical List

24-136

SecondaryAddress
Specify secondary address of GPIB instrument

Description
For GPIB and VISA-GPIB objects, you configure SecondaryAddress to be the GPIB
secondary address associated with your instrument. You can initially specify the
secondary address during object creation using the gpib or visa function. For VISA-
GPIB-VXI objects, SecondaryAddress is read-only, and the value is returned
automatically by the VISA interface after the object is connected to the instrument with
the fopen function.

For GPIB objects, SecondaryAddress can range from 96 to 126, or it can be 0 indicating
that no secondary address is used. For VISA-GPIB objects, SecondaryAddress can
range from 0 to 30. If your instrument does not have a secondary address, then
SecondaryAddress is 0.

For GPIB and VISA-GPIB objects, the Name property is automatically updated to reflect
the SecondaryAddress value. For VISA-GPIB objects, the RsrcName property is
automatically updated to reflect the SecondaryAddress value.

You can configure SecondaryAddress only when the GPIB or VISA-GPIB object is
disconnected from the instrument. You disconnect a connected object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics
Usage GPIB, VISA-GPIB, VISA-GPIB-VXI
Read only While open (GPIB, VISA-GPIB), always (VISA-GPIB-VXI)
Data type Double

 SecondaryAddress

24-137

Values
For GPIB objects, SecondaryAddress can range from 96 to 126, or it can be 0. For
VISA-GPIB objects, SecondaryAddress can range from 0 to 30. The default value is 0.

Examples
This example creates a VISA-GPIB object associated with board 0, primary address 1,
and secondary address 8, and then returns the secondary address.

vg = visa('agilent','GPIB0::1::8::INSTR');
vg.SecondaryAddress
ans =
 8

See Also

Functions

fclose, gpib, visa

Properties

Name, RsrcName, Status

24 Properties — Alphabetical List

24-138

SerialNumber
Specify index of USB instrument on USB hub

Description
You configure SerialNumber to be the index of the USB instrument on the USB hub.

The Name and RsrcName properties are automatically updated to reflect the
SerialNumber value.

You can configure SerialNumber only when the object is disconnected from the
instrument. You disconnect a connected object with the fclose function. A disconnected
object has a Status property value of closed.

Characteristics
Usage VISA-USB
Read only While open
Data type Character vector

See Also

Functions

fclose

Properties

Name, RsrcName

 SerialNumber

24-139

ServerDescription
IVI configuration store server description

Description
ServerDescription contains the description of the IVI configuration store server. This
is not user-configurable.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Character vector

24 Properties — Alphabetical List

24-140

Sessions
Array of driver sessions in IVI configuration store

Description
Sessions identifies the sessions in the IVI configuration store, including the driver
sessions.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Array of Structs

See Also

Properties

DriverSessions

 Sessions

24-141

Slot
Slot location of VXI instrument

Description
Slot indicates the physical slot of the VXI instrument. Slot can be any value between 0
and 12.

Characteristics
Usage VISA-VXI, VISA-GPIB-VXI
Read only Always
Data type Double

Values
The property value is defined when the instrument object is connected.

24 Properties — Alphabetical List

24-142

SoftwareModules
Array of software modules in IVI configuration store

Description
SoftwareModules identifies the software modules in the IVI configuration store. These
are installed by the user, but are not configurable. They include instrument drivers.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Array of Structs

Values
The default value is empty when no software modules are installed.

See Also

Properties

DriverSessions, HardwareAssets

 SoftwareModules

24-143

SpecificationVersion
IVI configuration server specification version that this server revision complies with

Description
SpecificationVersion identifies the specification version of the IVI configuration
store server. This is not user-configurable.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Character vector

24 Properties — Alphabetical List

24-144

Status
Status of whether object is connected to instrument

Description
Status can be open or closed. If Status is closed, the object is not connected to the
instrument. If Status is open, the object is connected to the instrument.

Before you can write or read data, you must connect the object to the instrument with the
fopen function. You use the fclose function to disconnect an object from the
instrument.

Characteristics
Usage Any instrument object
Read only Always
Data type Character vector

Values
{closed} The object is not connected to the instrument.
open The object is connected to the instrument.

See Also

Functions

fclose, fopen

 Status

24-145

StopBits
Specify number of bits used to indicate end of byte

Description
You can configure StopBits to be 1, 1.5, or 2 for serial port objects, or 1 or 2 for VISA-
serial objects If StopBits is 1, one stop bit is used to indicate the end of data
transmission. If StopBits is 2, two stop bits are used to indicate the end of data
transmission. If StopBits is 1.5, the stop bit is transferred for 150% of the normal time
used to transfer one bit.

Note Both the computer and the instrument must be configured to transmit the same
number of stop bits.

In addition to the stop bits, the serial data format consists of a start bit, between five and
eight data bits, and possibly a parity bit. You specify the number of data bits with the
DataBits property, and the type of parity checking with the Parity property.

Characteristics
Usage Serial port, VISA-serial
Read only Never
Data type double

Values

Serial Port
{1} One stop bit is transmitted to indicate the end of a byte.
1.5 The stop bit is transferred for 150% of the normal time used to

transfer one bit.

24 Properties — Alphabetical List

24-146

2 Two stop bits are transmitted to indicate the end of a byte.

VISA-Serial
{1} One stop bit is transmitted to indicate the end of a byte.
2 Two stop bits are transmitted to indicate the end of a byte

Examples
This example shows how to set the StopBits for a serial port object.

Create a serial port object associated with the COM1 port. The default setting for
StopBits is 1 for serial port objects. Change the value to use two stop bits to indicate
the end of data transmission.

s = serial('COM1');
s.StopBits = 2;

See Also

Properties

DataBits, Parity

 StopBits

24-147

Tag
Specify label to associate with instrument object

Description
You configure Tag to be a character vector value that uniquely identifies an instrument
object.

Tag is particularly useful when constructing programs that would otherwise need to
define the instrument object as a global variable, or pass the object as an argument
between callback routines.

You can return the instrument object with the instrfind function by specifying the Tag
property value.

Characteristics
Usage Any instrument object
Read only Never
Data type Character vector

Values
The default value is an empty character vector.

Examples
Suppose you create a serial port object on a Windows machine associated with the serial
port COM1.

s = serial('COM1');
fopen(s);

24 Properties — Alphabetical List

24-148

You can assign s a unique label using Tag.

s.Tag = 'MySerialObj'

You can access s in the MATLAB workspace or in a file using the instrfind function
and the Tag property value.

s1 = instrfind('Tag','MySerialObj');

See Also

Functions
instrfind

 Tag

24-149

Terminator
Specify terminator character

Description
For serial, TCPIP, UDP, and VISA-serial objects, you can configure Terminator to an
integer value ranging from 0 to 127, to the equivalent ASCII character, or to empty ('').
For example, to configure Terminator to a carriage return, you specify the value to be
CR or 13. To configure Terminator to a line feed, you specify the value to be LF or 10.
For serial port objects, you can also set Terminator to CR/LF or LF/CR. If Terminator
is CR/LF, the terminator is a carriage return followed by a line feed. If Terminator is
LF/CR, the terminator is a line feed followed by a carriage return. Note that there are no
integer equivalents for these two values.

Additionally, you can set Terminator to a 1-by-2 cell array. The first element of the cell
is the read terminator and the second element of the cell array is the write terminator.

When performing a write operation using the fprintf function, all occurrences of \n are
replaced with the Terminator value. Note that %s\n is the default format for fprintf.
A read operation with fgetl, fgets, or fscanf completes when the Terminator value
is read. The terminator is ignored for binary operations.

You can also use the terminator to generate a bytes-available event when the
BytesAvailableFcnMode is set to terminator.

Characteristics
Usage Serial, TCPIP, UDP, VISA-serial
Read only Never
Data type ASCII value

24 Properties — Alphabetical List

24-150

Values
An integer value ranging from 0 to 127, the equivalent ASCII character, or empty ('').
For serial port objects, CR/LF and LF/CR are also accepted values. You specify different
read and write terminators as a 1-by-2 cell array.

Examples
This example shows how to set the terminator for a serial port object.

Create a serial port object associated with the COM1 port. The oscilloscope you are
connecting to over the serial port is configured to a baud rate of 9600 and a carriage
return terminator, so set the serial port object to those values.

s = serial('COM1');
s.Baudrate = 9600;
s.Terminator = 'CR';

See Also

Functions

fgetl, fgets, fprintf, fscanf

Properties

BytesAvailableFcnMode

 Terminator

24-151

Timeout
Specify waiting time to complete read or write operation

Description
You configure Timeout to be the maximum time (in seconds) to wait to complete a read
or write operation.

If a timeout occurs, then the read or write operation aborts. Additionally, if a timeout
occurs during an asynchronous read or write operation, then

• An error event is generated.
• The callback function specified for ErrorFcn is executed.

Note Timeouts are rounded upwards to full seconds.

Characteristics
Usage Any instrument object
Read only Never
Data type Double

Values
The default value is 10 seconds.

Note that timeouts are rounded upwards to full seconds.

Examples
You can configure the Timeout to be the maximum time in seconds to wait to complete a
read or write operation for most interfaces.

24 Properties — Alphabetical List

24-152

For example, create a GPIB object g associated with a National Instruments GPIB
controller with board index 0, and an instrument with primary address 1.

g = gpib('ni',0,1);

You might want to configure the timeout value to a half minute to account for slow data
transfer.

g.Timeout = 30;

Then when you connect to the instrument and do a data read and write, the timeout
value of 30 seconds is used.

See Also

Properties

ErrorFcn

 Timeout

24-153

TimerFcn
Specify callback function to execute when predefined period passes

Description
You configure TimerFcn to execute a callback function when a timer event occurs. A
timer event occurs when the time specified by the TimerPeriod property passes. Time is
measured relative to when the object is connected to the instrument with fopen.

Note A timer event can be generated at any time during the instrument control session.

If the RecordStatus property value is on, and a timer event occurs, the record file
records this information:

• The event type as Timer
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

Some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value is too small.

To learn how to create a callback function, refer to “Creating and Executing Callback
Functions” on page 4-32.

Characteristics
Usage Any instrument object
Read only Never
Data type Callback function

24 Properties — Alphabetical List

24-154

Values
The default value is an empty character vector.

See Also

Functions

fopen, record

Properties

RecordStatus, TimerPeriod

 TimerFcn

24-155

TimerPeriod
Specify period between timer events

Description
TimerPeriod specifies the time, in seconds, that must pass before the callback function
specified for TimerFcn is called. Time is measured relative to when the object is
connected to the instrument with fopen.

Some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value is too small.

Characteristics
Usage Any instrument object
Read only Never
Data type Double

Values
The default value is 1 second. The minimum value is 0.01 second.

See Also

Functions
fopen

Properties

TimerFcn

24 Properties — Alphabetical List

24-156

TransferDelay
Specify use of TCP segment transfer algorithm

Description
You can configure TransferDelay to on or off. If TransferDelay is on, small
segments of outstanding data are collected and sent in a single packet when
acknowledgment (ACK) arrives from the server. If TransferDelay is off, data is sent
immediately to the network.

If a network is slow, you can improve its performance by configuring TransferDelay to
on. However, on a fast network acknowledgments arrive quickly and there is negligible
difference between configuring TransferDelay to on or off.

Note that the segment transfer algorithm used by TransferDelay is Nagle's algorithm.

Characteristics
Usage TCPIP
Read only Never
Data type Character vector

Values
{on} Use the TCP segment transfer algorithm.
off Do not use the TCP segment transfer algorithm.

 TransferDelay

24-157

See Also

Functions
tcpip

24 Properties — Alphabetical List

24-158

TransferStatus
Status of whether asynchronous read or write operation is in progress

Description
TransferStatus can be idle, read, write, or read&write. If TransferStatus is
idle, then no asynchronous read or write operations are in progress. If
TransferStatus is read, then an asynchronous read operation is in progress. If
TransferStatus is write, then an asynchronous write operation is in progress. If
TransferStatus is read&write, then both an asynchronous read and an asynchronous
write operation are in progress.

You can write data asynchronously using the fprintf or fwrite functions. You can
read data asynchronously using the readasync function, or by configuring
ReadAsyncMode to continuous (serial, TCPIP, UDP, and VISA-serial objects only). For
detailed information about asynchronous read and write operations, refer to
“Communicating with Your Instrument” on page 2-8.

While readasync is executing for any instrument object, TransferStatus might
indicate that data is being read even though data is not filling the input buffer. However,
if ReadAsyncMode is continuous, TransferStatus indicates that data is being read
only when data is actually filling the input buffer.

Characteristics
Usage Any instrument object
Read only Always
Data type Character vector

Values
{idle} No asynchronous operations are in progress.
read An asynchronous read operation is in progress.

 TransferStatus

24-159

write An asynchronous write operation is in progress.
read&write Asynchronous read and write operations are in progress.

See Also

Functions

fprintf, fwrite, readasync

Properties

ReadAsyncMode

24 Properties — Alphabetical List

24-160

TriggerFcn
Specify callback function to execute when trigger event occurs

Description
You configure TriggerFcn to execute a callback function when a trigger event occurs. A
trigger event is generated when a trigger occurs in software, or on one of the VXI
hardware trigger lines. You configure the trigger type with the TriggerType property.

Note A trigger event can be generated at any time during the instrument control session.

If the RecordStatus property value is on, and a trigger event occurs, the record file
records

• The event type as Trigger
• The time the event occurred using the format day-month-year

hour:minute:second:millisecond

Characteristics
Usage VISA-VXI
Read only Never
Data type Character vector

Values
The default value is an empty character vector.

 TriggerFcn

24-161

See Also

Functions
record

Properties

RecordStatus, TriggerLine, TriggerType

24 Properties — Alphabetical List

24-162

TriggerLine
Specify trigger line on VXI instrument

Description
You can configure TriggerLine to be TTL0 through TTL7, ECL0, or ECL1. You can use
only one trigger line at a time.

You can specify the trigger type with the TriggerType property. When TriggerType is
hardware, the line triggered is given by the TriggerLine value. When the
TriggerType is software, the TriggerLine value is ignored.

You execute a trigger for a VISA-VXI object with the trigger function.

Characteristics
Usage VISA-VXI
Read only Never
Data type Character vector

Values
TriggerLine can be TTL0 through TTL7, ECL0, or ECL1. The default value is TTL0.

See Also

Functions

trigger

 TriggerLine

24-163

Properties

TriggerType

24 Properties — Alphabetical List

24-164

TriggerType
Specify trigger type

Description
You can configure TriggerType to be software or hardware. If TriggerType is
software, then a software trigger is used. If TriggerType is hardware, then the
trigger line specified by the TriggerLine property is used.

You execute a trigger for a VISA-VXI object with the trigger function.

Characteristics
Usage VISA-VXI
Read only Never
Data type Character vector

Values
{hardware} A hardware trigger is used.
software A software trigger is used.

See Also

Functions
trigger

Properties

TriggerLine

 TriggerType

24-165

Type
Instrument object type

Description
Type indicates the type of the object. Type is automatically defined after the instrument
object is created with the serial, gpib, or visa function.

Using the instrfind function and the Type value, you can quickly identify instrument
objects of a given type.

Characteristics
Usage Any instrument object
Read only Always
Data type Character vector

Values
gpib The object type is GPIB.
serial The object type is serial port.
tcpip The object type is TCPIP.
udp The object type is UDP.
visa-gpib The object type is VISA-GPIB.
visa-vxi The object type is VISA-VXI.
visa-gpib-vxi The object type is VISA-GPIB-VXI.
visa-serial The object type is VISA-serial.

The value is automatically determined when the instrument object is created.

24 Properties — Alphabetical List

24-166

Examples
Create a serial port object on a Windows machine associated with the serial port COM1.
The value of the Type property is serial, which is the object class.

s = serial('COM1');
s.Type
ans =
serial

See Also

Functions

instrfind, gpib, serial, tcpip, udp, visa

 Type

24-167

UserData
Specify data to associate with instrument object

Description
You configure UserData to store data that you want to associate with an instrument
object. The object does not use this data directly, but you can access it using dot notation.

Characteristics
Usage Any instrument object
Read only Never
Data type Any type

Values
The default value is an empty vector.

Examples
Create the serial port object on a Windows machine associated with the serial port
COM1.

s = serial('COM1');

You can associate data with s by storing it in UserData.

coeff.a = 1.0;
coeff.b = -1.25;
s.UserData = coeff

24 Properties — Alphabetical List

24-168

ValuesReceived
Total number of values read from instrument

Description
ValuesReceived indicates the total number of values read from the instrument. The
value is updated after each successful read operation, and is set to 0 after the fopen
function is issued. If the terminator is read from the instrument, then this value is
reflected by ValuesReceived.

If you are reading data asynchronously, use the BytesAvailable property to return the
number of bytes currently available in the input buffer.

When performing a read operation, the received data is represented by values rather
than bytes. A value consists of one or more bytes. For example, one uint32 value
consists of four bytes. Refer to “Output Buffer and Data Flow” on page 3-15 for more
information about bytes and values.

Characteristics
Usage Any instrument object
Read only Always
Data type Double

Values
The default value is 0.

Examples
Suppose you create a serial port object on a Windows machine associated with the serial
port COM1.

 ValuesReceived

24-169

s = serial('COM1');
fopen(s)

If you write the RS232? command, and then read back the response using fscanf,
ValuesReceived is 17 because the instrument is configured to send the LF terminator.

fprintf(s,'RS232?')
out = fscanf(s)
out =
9600;0;0;NONE;LF
s.ValuesReceived
ans =
 17

See Also

Functions
fopen

Properties

BytesAvailable

24 Properties — Alphabetical List

24-170

ValuesSent
Total number of values written to instrument

Description
ValuesSent indicates the total number of values written to the instrument. The value is
updated after each successful write operation, and is set to 0 after the fopen function is
issued. If you are writing the terminator, then ValuesSent reflects this value.

If you are writing data asynchronously, use the BytesToOutput property to return the
number of bytes currently in the output buffer.

When performing a write operation, the transmitted data is represented by values rather
than bytes. A value consists of one or more bytes. For example, one uint32 value
consists of four bytes. Refer to “Output Buffer and Data Flow” on page 3-15 for more
information about bytes and values.

Characteristics
Usage Any instrument object
Read only Always
Data type Double

Values
The default value is 0.

Examples
Create a serial port object on a Windows machine associated with the serial port COM1.

s = serial('COM1');
fopen(s)

 ValuesSent

24-171

If you write the *IDN? command using the fprintf function, then ValuesSent is 6
because the default data format is %s\n, and the terminator was written.

fprintf(s,'*IDN?')
s.ValuesSent
ans =
 6

See Also

Functions
fopen

Properties

BytesToOutput

24 Properties — Alphabetical List

24-172

Vendor
IVI configuration server vendor

Description
Vendor identifies the vendor of the IVI configuration server. This is not user-
configurable.

Characteristics
Usage IVI configuration store object
Read only Always
Data type Character vector

 Vendor

24-173

Block Reference

25

Query Instrument
Query or read instrument data

Library
Instrument Control Toolbox

Description
The Query Instrument block configures and opens an interface to an instrument,
initializes the instrument, and queries the instrument for data. The configuration and
initialization happen at the start of the model execution. The block queries the
instrument for data during model run time.

The block has no input ports. The block has one output port corresponding to the data
received from the instrument.

Parameters
Block sample time

The Block sample time parameter is the only setting outside of the dialog box tabs.
The default value is 1. Setting the value to -1 sets the block to inherit timing. A
positive value is used as the sample period.

Hardware Configuration Tab

The Hardware Configuration tab is where you define the settings for communications
with your instrument. You have two choices about establishing an interface:

25 Block Reference

25-2

• Specify a new hardware configuration.
• Use an interface object from the MATLAB workspace.

The following figure shows the Hardware Configuration tab set to specify a new
hardware configuration using a serial port interface.

Because some parameters apply to multiple interface types, they appear here in
alphabetical order.

Baudrate
The rate at which bits are transmitted for the serial or VISA serial interface.

 Query Instrument

25-3

Board index
The index of the board used for GPIB, VISA GPIB, VISA TCPIP, or VISA USB
interface to the instrument. See BoardIndex property for more information.

Board vendor
The vendor of the GPIB board used for the interface to the instrument. Your choices
are Keysight (formerly Agilent), ICS Electronics, Measurement Computing (MCC),
and National Instruments.

Chassis index
The index number of the VXI chassis. Used for VISA VXI and VISA VXI-GPIB
interface types.

Buffer size
The total number of bytes that can be stored in the software input buffer during a
read operation.

Interface
Select the type of hardware interface to the instrument. Your options are those
interfaces supported by the Instrument Control Toolbox software. The previous
figure shows a configuration for a serial port interface.

Logical address
The logical address of the VXI instrument. Used for VISA VXI and VISA VXI-GPIB
interface types.

Manufacturer ID
The manufacturer ID of the VISA USB instrument. See ManufacturerID property for
more information.

Model code
The model code of the VISA USB instrument. See ModelCode property for more
information.

Port
The port for the serial interface: COM1, COM2, etc.

Primary address
The primary address of the instrument on the GPIB.

Remote host
The host name or IP address of the instrument. Used for UDP, TCPIP, or VISA
TCPIP interface types.

25 Block Reference

25-4

Remote port
The port on the instrument or remote host used for communication. Used for UDP,
TCPIP, or VISA TCPIP interface types.

Secondary address
The secondary address of the instrument on the GPIB.

Serial number
The serial number of the VISA USB instrument defined as a character vector. See
SerialNumber property for more information.

Timeout
Time in seconds allowed to complete the query operation.

VISA vendor
The vendor of the VISA used for any of the VISA interface types. Your choices are
Agilent, National Instruments, and Tektronix.

Use interface object from MATLAB workspace
Select this option to use an interface object from the MATLAB workspace.

Workspace object
Enter the object name that you want to use from the MATLAB workspace.

Instrument Initialization Tab

The Instrument Initialization tab is where you define what happens when you first
open your connection to the instrument.

 Query Instrument

25-5

None
The default initialization option is none.

Send string
A string sent to the instrument as an instrument command to initialize the
instrument or set it up in a known state.

Execute function
Any function that has as its only argument the interface object representing the
instrument. You can write this function to include several instrument commands and
initialization data.

Query Tab

The Query tab is where you define the optional query command, set the format for the
response, and define what the block does after the initial instrument response.

25 Block Reference

25-6

Query command
This is the query command that is sent to the instrument. It is usually a request for
instrument status or data. This command is optional — if you are retrieving
information or data from the instrument and no query command is necessary to do
that, you can leave this field blank.

Data format
Your options are ASCII, Binary, or Binblock (binary block — the binblock format
is described in the binblockwrite function reference page).

ASCII format string
Available only when the format is ASCII, this defines the format string for the data.
For a list of formats, see the fscanf function.

Precision
Used for binary or binblock format. Your options are:

 Query Instrument

25-7

• 8-bit integer (default)
• 16-bit integer
• 32-bit integer
• 8-bit unsigned integer
• 16-bit unsigned integer
• 32-bit unsigned integer
• 32-bit float
• 64-bit float

Byte order
When using binary or binblock format with more than 8 bits, you can specify the
instrument's byte order for the data. Your options are Big Endian or
Little Endian.

Binary values to read
Used for binary format. Specify the number of binary values to read from the
instrument.

Remove additional bytes from input buffer
Select this option if you want to remove any additional bytes from the input buffer
before querying.

After initial response
This defines the action to take after the first response from the instrument. Your
options are Repeat query for new data, Recycle original data, Hold final value,
Output zero, or Stop simulation.

Enable frame output
A frame is a sequence of samples combined into a single vector. In frame-based
processing all the samples in a frame are processed simultaneously. In sample-based
processing, samples are processed one at a time. The advantage of frame-based
processing is that it can greatly increase the speed of a simulation. For example, you
might use frames if you are reading a waveform from your instrument rather than a
single-point measurement.

Frame size
Frame size determines the number of samples in a frame.

25 Block Reference

25-8

Note Hardware information shown in the dialog box is determined and cached when you
first open the dialog box. To refresh the display with new values, restart MATLAB.

See Also
Serial Configuration, Serial Receive, Serial Send, TCP/IP Receive, TCP/IP Send, To
Instrument, UDP Receive, UDP Send

Introduced before R2006a

 Query Instrument

25-9

Serial Configuration
Configure parameters for serial port

Library
Instrument Control Toolbox

Description
The Serial Configuration block configures parameters for a serial port that you can use to
send and receive data. You must set the parameters of your serial port before you set up
the Serial Receive and the Serial Send block.

You must first specify the configuration of your serial port before you configure the Serial
Receive and Serial Send blocks. The Receive and Send blocks will prompt you to add a
Configuration block to configure your serial port properties.

Note You need a license for both the Instrument Control Toolbox and Simulink software
to use this block.

Parameters
Communication port

Specify the serial port to configure. You have to select an available port from the list.
By default no port is selected and this field displays <Please select a port...>. Use
this configured port in your Serial Send and Serial Receive blocks. Each Serial Send
and Receive block must have a configured serial configuration. If you use multiple
serial ports in your simulation, you must configure each port using a separate serial
configuration block.

25 Block Reference

25-10

Baud rate
Specify the rate at which bits are transmitted for the serial interface. Default value is
9600.

Data bits
Specify the number of data bits to transmit over the serial interface. Default value is
8 and other available values are 5, 6, and 7.

Parity
Specify how you want to check parity bits in the data bits transmitted via the serial
port. By default this is set to none, and the available values are:

• none — Where no parity checking is done.
• even — Where parity bit is set to 0 if the number of ones in a given set of bits is

even.
• odd — Where parity bit is set to 1 if the number of ones in a given set of bits is

odd.
• mark — Where parity bit is always set to 1.
• space — Where parity bit is always set to 0.

Stop bits
Specify the number of bits used to indicate the end of a byte. The number of data bits
you select determines the choices available for stop bits. If you select data bits 6, 7, or
8, then the default value is 1 and the other available choice is 2. If you select data bit
5, then the only choice available is 1.5.

Byte order
Specify the byte order as littleEndian (default) or bigEndian. If byte order is
littleEndian, then the instrument stores the first byte in the first memory
address. If byte order is bigEndian, then the instrument stores the last byte in the
first memory address.

You should configure byte order to the appropriate value for your instrument before
performing a read or write operation. Refer to your instrument documentation for
information about the order in which it stores bytes.

Flow control
Specify the process of managing the rate of data transmission on your serial port.
Choose none to have no flow control or hardware to let your hardware determine
the flow control.

 Serial Configuration

25-11

Timeout
Specify the amount of time that the model will wait for the data during each
simulation time step. The default value is 10 (seconds).

See Also
Query Instrument, Serial Receive, Serial Send, TCP/IP Receive, TCP/IP Send, To
Instrument, UDP Receive, UDP Send

Introduced in R2008a

25 Block Reference

25-12

Serial Receive
Receive binary data over serial port

Library
Instrument Control Toolbox

Description

The Serial Receive block configures and opens an interface to a specified remote address
using the Serial protocol. The configuration and initialization occur once at the start of
the model's execution. The block acquires data during the model's run time.

Note You need a license for both the Instrument Control Toolbox and Simulink software
to use this block.

This block has no input ports. It has one or two output ports based on your selection of
blocking or nonblocking mode. If you select blocking mode, the block will have one output
port corresponding to the data it receives.

If you do not select blocking mode, the block will have two output ports, the Data port
and the Status port.

 Serial Receive

25-13

A First In, First Out (FIFO) buffer receives the data. At every time step, the Data port
outputs the requested values from the buffer. In a nonblocking mode, the Status port
indicates if the block has received new data. If the Status port displays 1 it means new
data is available and if the Status port indicates 0 it means no new data is available.

Parameters

Note Configure your serial port parameters before you specify the source block
parameters.

Communication port
Specify the serial port that you will use to receive from. You have to select an
available port from the list. By default, the Communication port field contains the
text Please select a port... and you must change this to a valid port. If you have not
configured a port, the block will prompt you to do so. You can select a port from the
available ports and then configure the port using the Serial Configuration block.
Each Serial Receive block must have a configured serial port. If you use multiple
ports in your simulation, you must configure each port separately.

Header
Specify data that marks the beginning of your data block. The header indicates the
beginning of a new data block and the simulation will disregard data that occurs
before the header. The header data is not sent to the output port. Only data that
occurs between the header and the terminator is sent to the output port. By default
none or no header is specified.

Anything entered in the header is treated as a character. If you want to specify
numbers, you need to use the corresponding ascii characters for them. For example,
to specify [40 41], you can enter () in the field. Note that single quotes are also
treated as characters. You can use the corresponding ascii characters for the
numbers between 32 and 126.

25 Block Reference

25-14

Terminator
Specify data that marks the end of your data block. The terminator indicates the end
of the data block and the simulation will account for any data that occurs after the
terminator as a new data block. The terminator data is not sent to the output port.
Only data that occurs between the header and the terminator is sent to the output
port. By default <none> or no terminator is specified. Other available terminator
formats are:

• CR ('\r') — Carriage return
• LF ('\n') — Line feed
• CR/LF ('\r\n')
• NULL ('\0')

Data size
Specify the output data size, or the number of values that should be read at every
simulation time step. The default size is [1 1].

Data type
Specify the output data type to receive from the block. You can select from the
following values:

• single
• double
• int8
• uint8 (default)
• int16
• uint16
• int32
• uint32

Byte order
When you specify a data type other than int8 or uint8, you can specify the byte order
of the device for the binary data. Your options are BigEndian or LittleEndian.

Enable blocking mode
Specify if you want to block the simulation while receiving data. This option is
selected by default. Clear this check box if you do not want the read operation to
block the simulation.

 Serial Receive

25-15

If you enable blocking mode, the model will block the simulation while it is waiting
for the requested data to be available. When you do not enable blocking mode, the
simulation runs continuously. The block has two output ports, Status and Data. The
Data port contains the requested set of data at each time step. The Status port
contains 0 or 1 based on whether it received new data at the given time step.

Action when data is unavailable
Specify the action the block should take when data is unavailable. Available options
are:

• Output last received value — Block will return the value it received at the
preceding time step when it does not receive data at current time step. This value
is selected by default.

• Output custom value — Block will return any user–defined value when it does
not receive current data. You can define the custom value in the Custom value
field.

• Error — Block will return an error when it does not receive current data. This
option is unavailable if you do not select blocking mode.

Custom value
Specify a custom value for the block to output when it does not receive current data.
The default value is 0. The custom value can be scalar or value equal to the size of
Data that it receives (specified by Data size field).

Block sample time
Specify the sample time of the block during the simulation. This is the rate at which
the block is executed during simulation. The default value is 1 second.

See Also
Query Instrument, Serial Configuration, Serial Send, TCP/IP Receive, TCP/IP Send, To
Instrument, UDP Receive, UDP Send

Introduced in R2008a

25 Block Reference

25-16

Serial Send
Send binary data over serial port

Library
Instrument Control Toolbox

Description
The Serial Send block sends binary data from your model to the specified remote
machine using the serial protocol.

Note You need a license for both the Instrument Control Toolbox and Simulink software
to use this block.

The Serial Send block has one input port and it accepts both 1-D vector and matrix data.
This block has no output ports. The block inherits the data type from the signal at the
input port. Valid data types are: single, double, int8, uint8, int16, uin16, int32, and
uint32.

Parameters

Note Configure your serial port parameters before you specify the source block
parameters.

 Serial Send

25-17

Communication port
Specify the serial port that you will use to send through. You have to select an
available port from the list. If you have not configured a port, the block will prompt
you to do so. You can select a port from the available ports and then configure the
port using the Serial Configuration block. Each Serial Send block must have a
configured serial port. If you use multiple ports in your simulation, you must
configure each port separately.

Header
Specify supplemental data to be placed at the beginning of your data block. The Send
block adds the header in front of the data before sending it over the serial port. By
default none or no header is specified.

Anything entered in the header is treated as a character. If you want to specify
numbers, you need to use the corresponding ascii characters for them. For example,
to specify [40 41], you can enter () in the field. Note that single quotes are also
treated as characters. You can use the corresponding ascii characters for the
numbers between 32 and 126.

Terminator
Specify the supplemental data to be placed at the end of your data block. The Send
blocks appends the terminator to the data before sending it over the serial port. By
default <none> or no terminator is specified. Other available terminator formats are:

• CR ('\r') — Carriage return
• LF ('\n') — Line feed
• CR/LF ('\r\n')
• NULL ('\0')

Byte order
When you specify a data type other than int8 or uint8, you can specify the byte order
of the device for the binary data. Your options are BigEndian or LittleEndian.

Enable blocking mode
Specify if you want to block the simulation while sending data. This option is selected
by default. Clear this check box if you do not want the write operation to block the
simulation.

25 Block Reference

25-18

See Also
Query Instrument, Serial Configuration, Serial Receive, TCP/IP Receive, TCP/IP Send,
To Instrument, UDP Receive, UDP Send

Introduced in R2008a

 Serial Send

25-19

TCP/IP Receive
Receive data over TCP/IP from specified remote machine

Library
Instrument Control Toolbox

Description
The TCP/IP Receive block configures and opens an interface to a specified remote address
using the TCP/IP protocol. The configuration and initialization occur once at the start of
the model's execution. During the model's run time, the block acquires data either in
blocking mode or nonblocking mode.

Note You need a license for both the Instrument Control Toolbox and Simulink software
to use this block.

This block has no input ports. It has either one or two output ports, based on your
selection of blocking or nonblocking mode. If you select blocking mode then the block will
have one output port corresponding to the data it receives.

If you do not select blocking mode, the block will have two output ports, the Data port
and the Status port.

25 Block Reference

25-20

A First In First Out (FIFO) buffer receives the data. At every time step, the Data port
outputs the requested values from the buffer. In nonblocking mode, the Status port
indicates if the block has received new data.

Use the TCP/IP Receive block to read streaming data over a TCP/IP network, using the
Instrument Control Toolbox functionality in Simulink.

Parameters
Remote address

Enter the IP address, name, or the Web server address of the machine from which
you need to receive data. This field is empty by default.

Port
Enter the remote port on the remote machine you need to connect to. The default port
value is 80. Valid port values are 1 to 65535.

Verify address and port connectivity
Click this button to:

• Check if the specified remote address is correct.
• Establish connection with the specified remote address and port.

Data size
Specify the output data size, or the number of values that should be read at every
simulation time step. The default size is [1 1].

Data type
Specify the output data type to receive from the block. You can select from the
following values:

• single
• double

 TCP/IP Receive

25-21

• int8
• uint8 (default)
• int16
• uint16
• int32
• uint32

Byte order
When using binary or binblock format with more than 8 bits, you can specify the
instrument's byte order for the data. Your options are Big Endian or
Little Endian.

Enable blocking mode
Specify if you want to block the simulation while receiving data. This option is
selected by default. Clear this check box if you do not want the read operation to
block the simulation.

If you enable blocking mode, the model will block the simulation while it is waiting
for the requested data to be available. When you do not enable blocking mode, the
simulation runs continuously. The block has two output ports, Status and Data. The
Data port contains the requested set of data at each time step. The Status port
contains 0 or 1 based on whether it received new data at the given time step. The
following diagrams show the difference between receiving data using blocking mode
and nonblocking mode.

In this example, you start the simulation at time (t=0) and specify the amount of data
to receive as 4 (set in the Data size field of the TCP/IP Receive Block Parameters
dialog box). Once the simulation starts, the data is acquired asynchronously in a
FIFO buffer.

Blocking Mode

25 Block Reference

25-22

The blocking mode simulation occurs like this:

• At time step 1: The Simulink software requests data and the buffer has four
values available. The block fulfills the request without interrupting the
simulation. The block resets the buffer value to 0.

• At time step 2: The Simulink software requests data again, and the buffer has
only three values, therefore it blocks the simulation until it receives the fourth
value. When the block receives the fourth value, it fulfills the request and
resumes the simulation. The block resets the buffer value to 0.

• At time step 3: When Simulink software requests data, the block has five values
and it returns the first four that it received and resets the buffer to 1.

If the requested data is not received within the amount of time specified in the
Timeout field (of the TCP/IP Receive Block Parameters dialog box), a Simulink error
occurs and the simulation is stopped.

Note In blocking mode, if you have more than one TCP/IP model on your computer,
ensure that the Receive block is receiving data. If it is not, then your model might
error out. You can avoid this by either changing the block to Nonblocking mode or by
resetting the block's Priority (Simulink).

Nonblocking Mode

 TCP/IP Receive

25-23

Here the simulation is not blocked and runs continuously.

• At time step 1: The Simulink software requests data and the buffer has four
values available, the block fulfills the request and changes the Status port value
to 1, indicating that new data is available. The Data port at this point contains
the newly received values. The block resets the buffer value to 0.

• At time step 2: The Simulink software requests data again, and the buffer has
only three values. The block cannot return a value of 3 because the data size is
specified as 4. Therefore, the block sets the Status port value to 0, indicating that
there is no new data. The Data port contains the previously received value, and
the buffer is at three (the number of values it received since the last request was
fulfilled).

• At time step 3: When the Simulink software requests data here, the buffer now
has five values and it returns the first four in the order received and changes the
Status port value to 1.

Timeout
Specify the amount of time that the model will wait for the data during each
simulation time step. The default value is 10 (seconds). This field is disabled if you
did not select Enable blocking mode.

Block sample time
Specify the sample time of the block during the simulation. This is the rate at which
the block is executed during simulation. The default value is 0.01 (seconds).

25 Block Reference

25-24

See Also
Query Instrument, Serial Configuration, Serial Receive, Serial Send, TCP/IP Send, To
Instrument, UDP Receive, UDP Send

Introduced in R2007b

 TCP/IP Receive

25-25

TCP/IP Send
Send data over TCP/IP to specified remote machine

Library
Instrument Control Toolbox

Description
The TCP/IP Send block sends data from your model to remote machines using the
TCP/IP protocol. This data is sent at the end of the simulation or at fixed intervals
during a simulation.

Note You need a license for both the Instrument Control Toolbox and Simulink software
to use this block.

The TCP/IP Send block has one input port. The size of the input port is dynamic, and is
inherited from the driving block. This block has no output ports.

Parameters
Remote address

Specify the IP address, name, or the Web server address of the machine to which you
need to send data. This field is empty by default.

Port
Specify the remote port on the host you need to send the data to. The default port
value is 80. Valid port values are 1 to 65535.

25 Block Reference

25-26

Verify address and port connectivity
Click this button to:

• Check if the specified remote address is correct.
• Establish connection with the specified remote address and port.

Byte order
When using binary or binblock format with more than 8 bits, you can specify the
instrument's byte order for the data. Your options are Big Endian or
Little Endian.

Enable blocking mode
Specify if you want to block the simulation while sending data. This option is selected
by default. Clear this check box if you do not want the write operation to block the
simulation.

The following diagrams show the difference between sending data using blocking
mode and nonblocking mode.

Blocking Mode

In this example, you start the simulation at time (t=0). At time step (T1), data output
is initiated and simulation stops until the block of data (B1) is sent to the specified
remote address and port. After the data is sent, simulation resumes until time step
(T2), where the block initiates another data output and simulation is blocked until
the block of data (B2) is sent to the remote address and port, and the simulation
resumes.

Nonblocking Mode – Scenario 1

 TCP/IP Send

25-27

In this scenario, the data output outpaces the simulation speed. Data output is
initiated at the first time step (T1) and the corresponding block of data (B1) is sent to
the specified remote address asynchronously. The simulation runs continuously in
this mode.

Nonblocking Mode – Scenario 2

In this scenario, the simulation speed outpaces the data acquisition.

• At time step T1: The block of data (B1) is sent to the specified remote address and
port asynchronously.

• At time step T2: The simulation is blocked until the block of data (B1) is sent
completely. When B1 is completely sent, the new block of data (B2) is sent
asynchronously, and the simulation resumes.

25 Block Reference

25-28

Note Several factors, including network connectivity and model complexity, can
affect the simulation speed. This can cause both nonblocking scenarios to occur
within the same simulation.

Timeout
Specify the amount of time that the model will wait when data is sent during each
simulation time step. The default value is 10 (seconds). This field is unavailable if
you have not enabled blocking mode.

See Also
Query Instrument, Serial Configuration, Serial Receive, Serial Send, TCP/IP Receive, To
Instrument, UDP Receive, UDP Send

Introduced in R2007b

 TCP/IP Send

25-29

To Instrument
Send simulation data to instrument

Library
Instrument Control Toolbox

Description
The To Instrument block configures and opens an interface to an instrument, initializes
the instrument, and sends data to the instrument. The configuration and initialization
happen at the start of the model execution. The block sends data to the instrument
during model run time.

The block has no output ports. The block has one input port corresponding to the data
sent to the instrument. This data type must be double precision.

Note The To Instrument block can be used with these interfaces: VISA, GPIB, Serial,
TCP/IP, and UDP. It is not supported on these interfaces: SPI, I2C, and Bluetooth.

Parameters
Block sample time

The Block sample time parameter is the only setting outside of the dialog box tabs.
The default value of -1 sets the block to inherit timing. A positive value is used as
the sample period.

25 Block Reference

25-30

Hardware Configuration Tab

The Hardware Configuration tab is where you define the settings for communications
with your instrument. You have two choices about establishing an interface:

• Specify a new hardware configuration.
• Use an interface object from the MATLAB workspace.

The following figure shows the Hardware Configuration tab set to specify a new
hardware configuration using a serial port interface.

Because some parameters apply to multiple interface types, they appear here in
alphabetical order.

Baudrate
The rate at which bits are transmitted for the serial or VISA serial interface.

 To Instrument

25-31

Board index
The index of the board used for GPIB, VISA GPIB, VISA TCPIP, or VISA USB
interface to the instrument. See BoardIndex property for more information.

Board vendor
The vendor of the GPIB board used for the interface to the instrument. Your choices
are Keysight (formerly Agilent), ICS Electronics, Measurement Computing (MCC),
and National Instruments.

Chassis index
The index number of the VXI chassis. Used for VISA VXI and VISA VXI-GPIB
interface types.

Buffer size
The total number of bytes that can be stored in the software output buffer during a
read operation.

Interface
Select the type of hardware interface to the instrument. Your options are those
interfaces supported by the Instrument Control Toolbox software. The previous
figure shows a configuration for a serial port interface.

Logical address
The logical address of the VXI instrument. Used for VISA VXI and VISA VXI-GPIB
interface types.

Manufacturer ID
The manufacturer ID of the VISA USB instrument defined as a character vector. See
ManufacturerID property for more information.

Model code
The model code of the VISA USB instrument defined as a character vector. See
ModelCode property for more information.

Port
The port for the serial interface: COM1, COM2, etc.

Primary address
The primary address of the instrument on the GPIB.

Remote host
The host name or IP address of the instrument. Used for UDP, TCPIP, or VISA
TCPIP interface types.

25 Block Reference

25-32

Remote port
The port on the instrument or remote host used for communication. Used for UDP,
TCPIP, or VISA TCPIP interface types.

Secondary address
The secondary address of the instrument on the GPIB.

Serial number
The serial number of the VISA USB instrument defined as a character vector. See
SerialNumber property for more information.

Timeout
Time in seconds, allowed to complete the query operation.

VISA vendor
The vendor of the VISA instrument used for any of the VISA interface types. Your
choices are Agilent, National Instruments, and Tektronix.

Use interface object from MATLAB workspace
Select this option to use an interface object from the MATLAB workspace.

Workspace object
Enter the object name that you want to use from the MATLAB workspace.

Instrument Initialization Tab

The Instrument Initialization tab is where you define what happens when you first
open your connection to the instrument.

 To Instrument

25-33

None
The default initialization option is none.

Send string
A string sent to the instrument as an instrument command to initialize the
instrument or set it up in a known state.

Execute function
Any function that has as its only argument the interface object representing the
instrument. You can write this function to include several instrument commands and
initialization data.

Send Tab

The Send tab is where you define the optional command sent to the instrument and the
format of the sent data.

25 Block Reference

25-34

Command
This is the command that is sent to the instrument with the Simulink data. This
command is optional—if you leave this field blank, the Simulink data is sent to the
instrument without any prefix or additional formatting.

Output format
Your options are ASCII, Binary, or Binblock (binary block — the binblock format
is described in the binblockwrite function reference page).

ASCII format string
Available only when the format is ASCII, this defines the format string for the data.
For a list of formats, see the fprintf function.

Precision
Used for binary or binblock format. Your options are:

• 8-bit integer (default)
• 16-bit integer
• 32-bit integer
• 8-bit unsigned integer

 To Instrument

25-35

• 16-bit unsigned integer
• 32-bit unsigned integer
• 32-bit float
• 64-bit float

Byte order
When using binary or binblock format with more than 8 bits, you can specify the
instrument's byte order for the data. Your options are Big Endian or
Little Endian.

Tip Hardware information shown in the dialog box is determined and cached when you
first open the dialog box. To refresh the display with new values, restart MATLAB.

See Also
Query Instrument, TCP/IP Receive, TCP/IP Send, UDP Receive, UDP Send

Introduced before R2006a

25 Block Reference

25-36

UDP Receive
Receive data over UDP network from specified remote machine

Library
Instrument Control Toolbox

Description
The UDP Receive block configures and opens an interface to a specified remote address
using the UDP protocol. The configuration and initialization occur once at the start of the
model's execution. During the model's run time, the block acquires data either in
blocking or nonblocking mode.

Note You need a license for both the Instrument Control Toolbox and Simulink software
to use this block.

This block has no input ports. It has either one or two output ports based on your
selection of blocking or nonblocking mode. If you select blocking mode, the block will have
one output port corresponding to the data it receives.

If you do not select blocking mode, the block will have two output ports, the Data port
and the Status port.

 UDP Receive

25-37

A First In First Out (FIFO) buffer receives the data. At every time step, the Data port
outputs the requested values from the buffer. In a nonblocking mode, the Status port
indicates if the block has received new data.

Parameters
Remote address

Specify the IP address, name, or the Web server address of the machine from which
you need to receive data. This field is empty by default.

Port
Specify the remote port on the host you need to connect to. The default port value is
9090. Valid port values are 1 to 65535.

Local port
Specify the port to bind on the local machine. The default value is -1, which
automatically binds to an available port.

Verify address and port connectivity
Click this button to:

• Check if the specified remote address is correct.
• Establish connection with the specified remote address and port.

Data size
Specify the output data size, or the number of values that should be read at every
simulation time step. The default size is [1 1].

Data type
Specify the output data type to receive from the block. You can select from the
following values:

• single
• double

25 Block Reference

25-38

• int8
• uint8 (default)
• int16
• uint16
• int32
• uint32

Byte order
When using binary or binblock format with more than 8 bits, you can specify the
instrument's byte order for the data. Your options are Big Endian or
Little Endian.

Enable blocking mode
Specify if you want to block the simulation while receiving data. This option is
selected by default. Clear this check box if you do not want the read operation to
block the simulation.

If you enable blocking mode, the model will block the simulation while it is waiting
for the requested data to be available. If you do not enable blocking mode, the
simulation runs continuously. The block has two output ports, Status and Data. The
Data port contains the requested set of data at each time step. The Status port
contains 0 or 1 based on whether it received new data at the given time step. The
following diagrams show the difference between receiving data using blocking mode
and nonblocking mode.

In this example, you start the simulation at time (t=0) and specify the amount of data
to receive as 4 (set in the Data size field of the UDP Receive Block Parameters
dialog box). After the simulation starts, the data is acquired asynchronously in a
FIFO buffer.

Blocking Mode

 UDP Receive

25-39

The blocking mode simulation occurs like this:

• At time step 1: The Simulink software requests data and the buffer has four
values available, the block fulfills the request without interrupting the
simulation. The block resets the buffer value to 0.

• At time step 2: The Simulink software requests data again, and the buffer has
only three values, therefore it blocks the simulation until it receives the fourth
value. When the block receives the fourth value, it fulfills the request and
resumes the simulation. The block resets the buffer value to 0.

• At time step 3: When the Simulink software requests data, the block has five
values and it returns the first four that it received and resets the buffer to 1.

If the requested data is not received within the amount of time specified in the
Timeout field (of the UDP Receive Block Parameters dialog box), a Simulink
software error occurs and the simulation is stopped.

Note In blocking mode, if you have more than one UDP model on your computer,
ensure that the Receive block is receiving data. If it is not, then your model might
error out. You can avoid this by either changing the block to Nonblocking mode or by
resetting the block's Priority (Simulink).

Nonblocking Mode

25 Block Reference

25-40

Here the simulation is not blocked and runs continuously.

• At time step 1: The Simulink software requests data and the buffer has four
values available, the block fulfills the request and changes the Status port value
to 1, indicating that new data is available. The Data port at this point contains
the newly received values. The block resets the buffer value to 0.

• At time step 2: The Simulink software requests data again, and the buffer has
only three values, and the block cannot return it as data size is specified as 4.
Therefore the block sets the Status port value to 0, indicating that there is no
new data. The Data port contains the previously received value, and the buffer is
at three (the number of values it has received since the last request was fulfilled).

• At time step 3: When the Simulink software requests data here, the buffer now
has five values and it returns the first four in the order it received and changes
the Status port value to 1.

Timeout
Specify the amount of time that the model will wait for the data during each
simulation time step. The default value is inf (seconds). This field is unavailable if
you have not enabled blocking mode.

Block sample time
Specify the sampling time of the block during simulation. The default value is 0.01
(seconds).

 UDP Receive

25-41

See Also
Query Instrument, Serial Configuration, Serial Receive, Serial Send, TCP/IP Receive,
TCP/IP Send, To Instrument, UDP Send

Introduced in R2007b

25 Block Reference

25-42

UDP Send
Send data over UDP network to specified remote machine

Library
Instrument Control Toolbox

Description
The UDP Send block sends data from your model to the specified remote machine using
the UDP protocol.

Note You need a license for both the Instrument Control Toolbox and Simulink software
to use this block.

The UDP Send block has one input port and it accepts both 1-D vector and matrix data.
This block has no output ports. The block inherits the data type from the signal at the
input port.

Parameters
Remote address

Specify the IP address, name, or the Web server address of the machine to which you
need to send data. This field is empty by default.

Port
Specify the remote port on the host you need to send the data to. The default port
value is 9090. Valid port values are 1 to 65535.

 UDP Send

25-43

Local port
Specify the port to bind on the local machine. The default value is -1, which
automatically binds to an available port.

Verify address and port connectivity
Click this button to:

• Check if the specified remote address is correct.
• Establish connection with the specified remote address and port.

Byte order
When using binary or binblock format with more than 8 bits, you can specify the
instrument's byte order for the data. Your options are Big Endian or
Little Endian.

Enable blocking mode
Specify if you want to block the simulation while sending data. This option is selected
by default. Clear this check box if you do not want the write operation to block the
simulation.

The following diagrams show the difference between sending data using blocking
mode and nonblocking mode.

Blocking Mode

In this example, you start the simulation at time (t=0). At time step (T1), data output
is initiated and simulation stops until the block of data (B1) is sent to the specified
remote address and port. After the data is sent, simulation resumes until time step
(T2), where the block initiates another data output and simulation is blocked until

25 Block Reference

25-44

the block of data (B2) is sent to the remote address and port, and the simulation
resumes.

Nonblocking Mode – Scenario 1

In this scenario, the data output outpaces the simulation speed. Data output is
initiated at the first time step (T1) and the corresponding block of data (B1) is sent to
the specified remote address asynchronously. The simulation runs continuously in
this mode.

Nonblocking Mode – Scenario 2

In this scenario, the simulation is nonblocking and occurs faster than the data
initiation.

• At time step T1: The block of data (B1) is sent to the specified remote address and
port asynchronously.

 UDP Send

25-45

• At time step T2: The simulation is blocked until the block of data (B1) is sent
completely. When the (B1) is completely sent, the new block of data (B2) is sent
asynchronously, and the simulation resumes.

Note Several factors, including network connectivity and model complexity, can
affect the simulation speed. This can cause both nonblocking scenarios to occur
within the same simulation.

See Also
Query Instrument, Serial Configuration, Serial Receive, Serial Send, TCP/IP Receive,
TCP/IP Send, To Instrument, UDP Receive

Introduced in R2007b

25 Block Reference

25-46

Vendor Driver Requirements and
Limitations

This appendix describes the requirements and limitations for the vendor GPIB and VISA
drivers supported by the Instrument Control Toolbox software.

Note The limitations described in this appendix are restricted to the limitations directly
associated with using the Instrument Control Toolbox software.

Driver Requirements
You can use the Instrument Control Toolbox software with the following GPIB and VISA
drivers.
Interface Vendor Minimum Driver

Requirements
GPIB Keysight (formerly Agilent) Keysight IO Libraries

version 17.0
ICS Electronics ICS 488.2v4 Adaptor

version 4.0
Measurement Computing
Corporation (MCC)

MCC GPIB 488.2 Library
v2.3

National Instruments NI-488.2 Adaptor v2.8
ADLINK Technology ADLINK ADL-GPIB version

4.0.0
VISA Keysight (formerly Agilent) Keysight IO Libraries

version 17.0
National Instruments NI-VISA version 5.0
Tektronix Tektronix VISA version

3.3.0

See the following sections for a description of

• “GPIB Driver Limitations by Vendor” on page A-3
• “VISA Driver Limitations” on page A-5

A Driver Requirements

A-2

GPIB Driver Limitations by Vendor
In this section...
“ICS Electronics” on page A-3
“Keysight (formerly Agilent Technologies)” on page A-3
“Measurement Computing Corporation (MCC)” on page A-4
“ADLINK Technology” on page A-4

ICS Electronics

The ICS Electronics GPIB adaptor does not support asynchronous read and write
operations, and therefore, ICS GPIB objects do not support the following toolbox
functions and properties:

• readasync function
• async flag for the fprintf and fwrite functions
• BytesAvailableFcn property
• OutputEmptyFcn property

Keysight (formerly Agilent Technologies)

The Keysight GPIB driver has these limitations:

• Asynchronous read and write operations are not supported. Therefore, Keysight GPIB
objects do not support the following toolbox functionality:

• The readasync function
• The async flag for the fprintf and fwrite functions
• BytesAvailableFcn and OutputEmptyFcn properties

• The End Or Identify (EOI) line is not asserted when the End-Of-String (EOS)
character is written to the hardware. Therefore, when the EOSMode property is
configured to write and the EOIMode property is configured to on, the EOI line is not
asserted when the EOSCharCode property value is written to the hardware.

• All eight bits are used for the EOS comparison. Therefore, the only value supported
by the CompareBits property is 8.

 GPIB Driver Limitations by Vendor

A-3

• A board index value of 0 is not supported.
• An error is not reported for an invalid primary address. Instead, the read and write

operations will time out.

Measurement Computing Corporation (MCC)

The Measurement Computing Corporation GPIB driver does not support asynchronous
notification for the completion of read and write operations. Therefore, Measurement
Computing Corporation GPIB objects do not support the following toolbox functionality:

• The readasync function
• The async flag for the fprintf and fwrite functions
• The BytesAvailableFcn and OutputEmptyFcn properties

ADLINK Technology

The ADLINK GPIB adaptor does not support asynchronous read and write operations,
and therefore, ADLINK GPIB objects do not support the following toolbox functions and
properties:

• readasync function
• async flag for the fprintf and fwrite functions
• BytesAvailableFcn property
• OutputEmptyFcn property

A GPIB Driver Limitations by Vendor

A-4

VISA Driver Limitations
In this section...
“Keysight (formerly Agilent Technologies)” on page A-5
“National Instruments” on page A-5

Keysight (formerly Agilent Technologies)

The Keysight VISA driver uses all eight bits for the EOS comparison. Therefore, the only
value that the CompareBits property supports is 8.

National Instruments

The National Instruments VISA driver uses all eight bits for the EOS comparison.
Therefore, the only value that the CompareBits property supports is 8.

 VISA Driver Limitations

A-5

Bibliography
[1] Axelson, Jan, Serial Port Complete, Lakeview Research, Madison, WI, 1998.

[2] Courier High Speed Modems User's Manual, U.S. Robotics, Inc., Skokie, IL, 1994.

[3] TIA/EIA-232-F, Interface Between Data Terminal Equipment and Data Circuit-
Terminating Equipment Employing Serial Binary Data Interchange.

[4] Getting Started with Your AT Serial Hardware and Software for Windows 98/95,
National Instruments, Inc., Austin, TX, 1998.

[5] HP E1432A User's Guide, Hewlett-Packard Company, Palo Alto, CA, 1997.

[6] HP 33120A Function Generator/Arbitrary Waveform Generator User's Guide,
Hewlett-Packard Company, Palo Alto, CA, 1997.

[7] HP VISA User's Guide, Hewlett-Packard Company, Palo Alto, CA, 1998.

[8] NI-488.2MTM User Manual for Windows 95 and Windows NT, National Instruments,
Inc., Austin, TX, 1996.

[9] NI-VISATM User Manual, National Instruments, Inc., Austin, TX, 1998.

[10] IEEE Std 488.2-1992, IEEE Standard Codes, Formats, Protocols, and Common
Commands for Use with IEEE Std 4881.-1987, IEEE Standard Digital Interface
for Programmable Instrumentation, Institute of Electrical and Electronics
Engineers, New York, NY, 1992.

[11] Instrument Communication Handbook, IOTech, Inc., Cleveland, OH, 1991.

[12] TDS 200-Series Two Channel Digital Oscilloscope Programmer Manual, Tektronix,
Inc., Wilsonville, OR.

[13] Stevens, W. Richard, TCP/IP Illustrated, Volume 1, Addison-Wesley, Boston, MA,
1994.

